機械学習 名古屋 研究会 #20

イベント内容

機械学習 名古屋 研究会

概要

機械学習に関する論文・技術ブログを読み、情報共有のLTをする勉強会です。

  • 【発表者・事前に】 論文・技術ブログのまとめ作成(研究会の GitHub リポジトリにプルリク)
  • 【当日】 発表・質疑応答・不明点の解明

(参加枠は発表者優先。リモート可。)

対象

  • 機械学習を業務・趣味で用いている人
  • チュートリアルや基本的な技術書をある程度読み終え、次のステップへ進みたい人
  • 機械学習を使ったサービスのネタを探している人

目的

急速な進歩を続ける機械学習の分野で活躍するには、最新技術の情報収集が重要です。多人数で情報収集・共有をすれば効率的です。この勉強会で、

  • 知識のアップデート
  • 論文を読む習慣付け
  • 発展的・実践的な知見の獲得

をしましょう。

時間割

合計2時間のLT会を行います。発表者数で割った時間が一人あたりの持ち時間です。 一人あたり、発表5分、質疑応答5分を想定しています。

会場

参加方法

事前準備 当日 備考
現地発表枠 論文・技術ブログをまとめる(「発表方法」を参照) 会場に来て発表する 読む論文が決まらない場合も現地発表枠で申し込んでください
現地一般枠 会場に来て発表につっこみを入れる 会場の制約のため、現地発表枠と現地一般枠の合計人数は、12人以下とします。
リモート枠 開始直前にconnpass登録の連絡先に届く参加方法を確認し、リモート参加してください。

発表方法

論文・技術ブログを開催日時までに読んで、マークダウン形式で簡単にまとめ、研究会の GitHub リポジトリにプルリクエストを出してください。不明な場合などは代行します。その場合、管理者宛にまとめた.mdファイルを送付してください。

論文・技術ブログのまとめ方について

次は、まとめの章立ての例です。このような内容をまとめてください。

内容
どんなもの? 手法の概要
先行研究と比べて何がすごい? 新規性について
技術や手法の肝は? 手法のポイント
どうやって有効だと検証した? 評価指標など
議論はある? 論文の研究で出た予想や残った課題など
次に読むべき論文 関連する論文

論文まとめテンプレートを用意しています↓

論文まとめテンプレート

テンプレートなどを利用して、マークダウン形式(.md ファイル)でまとめを作成してください。

提出方法

提出は、研究会の GitHub リポジトリ へのプルリクエストで行います。

{研究会日付}_reportsディレクトリ内に、発表と紐づくようなパス(論文タイトル、発表者名など)でまとめを配置してください。例えば、第1回論文まとめディレクトリを参考にしてください。

GitHub を使えないなどの場合は、当日までに論文をまとめた .md ファイルを管理者宛に送付(もしくは共有URLを提示)いただければ、プルリク代行いたします。

FAQ

どうまとめたらいいか分からない

まとめの章立ての例や、論文まとめテンプレートは、 落合陽一氏の論文まとめ方(あるスライドの65ページ目) を参考に作成したものです。 考え方やコツは、これまでのまとめ(例えば、第1回論文まとめディレクトリ)や、以下に挙げる参考サイトなどを参考にしてください。

参考

GitHub の使い方(プルリクエストのやり方)が分からない

プルリクエストには GitHub のアカウントが必要です。プルリクエストの方法は次の記事が参考になります。

最新論文でないですが大丈夫ですか

会の趣旨から大きく離れていなければ大丈夫です。

画像を入れたい

外部サイトに画像を置く以外にも、20xxxxxx_reports/{発表との対応が分かるディレクトリ名}/xx.pngのようなパスに画像を置く方法をおすすめします。

差分

第14回より

  • アンケートを無くした。
  • 現地発表者は読む論文が決まっていなくても最初から現地発表枠で申し込む方式に変更した。

第13回より

  • 論文以外にも技術ブログも可とした。
  • 発表しなくても可とした。ただし、枠は発表者優先。
  • リモート参加を可とした。

注意事項

※ こちらのイベント情報は、外部サイトから取得した情報を掲載しています。
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。

類似しているイベント