High-dimensional Statistical Modeling Team Seminar (Talk by Dr. Vu Nguyen, Amazon)


Title: Bayesian Optimization with Categorical and Continuous Variables

Bayesian optimization (BO) has demonstrated impressive success in optimizing black-box functions. However, there are still challenges in dealing with black-boxes that include both continuous and categorical inputs. I am presenting our recent works in optimizing the mixed space of categorical and continuous variables using Bayesian optimization [1] and how to scale it up to higher dimensions [2] and population-based AutoRL setting [3].

[1] B. Ru, A. Alvi, V. Nguyen, M. Osborne, and S. Roberts. “Bayesian optimisation over multiple continuous and categorical inputs.” ICML 2020.
[2] X. Wan, V. Nguyen, H. Ha, B. Ru, C. Lu, and M. Osborne. “Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces.” ICML 2021
[3] J. Parker-Holder, V. Nguyen, S. Desai, and S. Roberts. “Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL.” NeurIPS 2021.

Dr. Vu Nguyen, Machine Learning Scientist, Amazon Adelaide


※ こちらのイベント情報は、外部サイトから取得した情報を掲載しています。
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。