基盤モデルが自動運転車を操ってる筆者のイメージ created by DALL-E Turingで機械学習チームでエンジニアをしている井ノ上です。(Twitter: いのいち) Turingは2030年までにあらゆる場所で自動走行が可能で、ハンドルが必要ない完全自動運転システム(Level 5自動運転)の開発を目指して様々な技術の調査や検証を行っています。このテックブログではTuringがどのようにしてLevel 5完全自動運転にアプローチしていくのか、近年の基盤モデルやGoogleのロボティクス研究から
NewsPicks エンジニアの中村です。普段はデータ基盤や機械学習システムの開発、運用をやっています。 さて皆さん、すでにChatGPTは使っていらっしゃるでしょうか。エンジニア、非エンジニアを問わず世の中を席巻している感のある ChatGPT ですが、今月初めにいよいよ API も公開されて、アプリケーションやサービスに組み込みたいと考えている方も多いのではないでしょうか1。 というわけで、弊社でもこの新しい技術をより多くのエンジニアに使いこなせるようになってもらいたいと考え、ChatGPT API
はじめに こんにちは、キャディAILab MLOpsエンジニアの廣岡です。MLOpsエンジニアの業務では、機械学習エンジニア(MLE)の開発したモデルのデプロイ面の協働や、それらを含む機械学習基盤の開発・運用などを担当しています。最近は特にモデルデプロイに伴うチェック内容の自動化や、各ライブラリのアップデートを安全に実施するためのCI/CDの整備などに取り組んでいます。 本稿では、AILabが運用する図面解析ETL基盤、および開発に際して得られた知見や悩みを記載します。読者の方の参考になれば幸いです。 T