【8月期 応用数学シリーズ】機械学習・ディープラーニングのための情報理論
スキルアップAIが次に開催するイベントはこちら
参加枠 | 申込形式 | 参加費 | 参加者 |
---|---|---|---|
前払い
|
先着順 |
19,000円
Paypal支払い
|
0人 / 定員5人 |
前払い・2回目の受講(機械学習・ディープラーニングのための情報理論の再受講)
|
先着順 |
3,000円
Paypal支払い
|
0人 / 定員2人 |
イベント内容
講座体系
機械学習の理解に不可欠な数学の知識に関して、初学者でも基礎から実践まで体系化に学べるように、基礎数学シリーズと応用数学シリーズの2シリーズで展開しています。
シリーズ | 分野 | 前提知識 |
---|---|---|
基礎数学シリーズ | 微分、線形代数、確率統計 | 不要 |
応用数学シリーズ | 多変量解析、ベイズ推論のための確率統計アドバンス、最適化、情報理論 | 基礎数学シリーズの指定の講座修了レベル |
直近のシリーズ
基礎数学
日程 | 時間 | 講義名 |
---|---|---|
8/11(土) | 14:00-19:00 | 機械学習・ディープラーニングのための微分基礎 |
8/12(日) | 14:00-19:00 | 機械学習・ディープラーニングのための確率・統計DAY1 |
8/18(土) | 14:00-19:00 | 機械学習・ディープラーニングのための線形代数 |
8/19(日) | 14:00-19:00 | 機械学習・ディープラーニングのための確率・統計DAY2 |
応用数学
日程 | 時間 | 講義名 |
---|---|---|
8/25(土) | 14:00-19:00 | 機械学習・ディープラーニングのための多変量解析 |
8/26(日) | 14:00-19:00 | ベイズ推論のための確率統計アドバンス |
9/01(土) | 14:00-20:30 | 機械学習・ディープラーニングのための最適化 |
9/02(日) | 14:00-17:30 | 機械学習・ディープラーニングのための情報理論 |
- お得な応用数学講座セットは、HP からお申し込みを受け付けております。
- HPからのセットでのお申し込みは、銀行振込、領収書・請求書・申込書希望にも対応可能です。
- 講座内で全て消化できない方向けに、HPから動画も購入いただけるように予定しております。
概要
AIに関するほとんどの書籍や学習コンテンツは、数式を用いた説明をしており、数学に苦手意識をもつ方にとっては、難解な分野だという雰囲気を醸しています。
しかし、AI自体が数式で知能を表現しようという試みであるとも言えるため、数学を学ばずにAIを理解することはできません。
スキルアップAIの数学講座は、前提知識不要レベルの基礎数学講座から、機械学習を理解するのに直結する応用数学講座まで、豊富なラインナップで講座を展開しています。
今回は、情報理論を扱います。情報理論は確率統計学の応用範囲である「計算機科学」の一分野であり、事象の曖昧さ、不確実さを定式的に扱うための極めて応用的、実用的な内容を多く含みます。
情報理論はあまりメジャーな分野ではありませんので、「本格的な講座」が開講されることがあまり多くありませんが、本講座では、機械学習関連の書籍、また、日本ディープラーニング協会E資格で出題範囲の情報理論の諸概念について、見た瞬間に「なるほど」と思えるレベルの理解を目指します。
自己情報量/相互情報量/エントロピー/KLダイバージェンスなどなど、機械学習の書籍では頻繁にあらわれる概念を、数式から逃げず、かつ、直感的な意味合いも大切にしながら丁寧に解説します。また、練習問題で「手を動かして」数式に習熟することも取り入れ、「根本的な理解」を目指します。
受付・入場時間
開始の10分前から
カリキュラム
・確率論の復習
・対数関数の復習
・自己情報量
・エントロピー
・2値エントロピー関数
・条件付きエントロピー
・相互情報量
・シャノンの基本不等式
・カルバック・ライブラー情報量(KLダイバージェンス)
*若干変更なる場合があります。
対象者
・微分、線形代数、確率統計については学んだが、情報理論についての入門書籍、講座が見つからず困っている方
・定義や定理を見ても、何を言っているのかよくわかず、もっと根本的な理解に到達したい方
・情報理論を実務に活かしたい方。
受講に必要なスキル
・「確率統計Day1, Day2」講座を受講もしくは、修了相当の理解をしていること
・基礎的な確率論の知識(習熟しているのが望ましいが、最低限の復習の時間も設ける)
・四則演算、Σ記号、関数等の基礎的な数学の知識
・数式を見ても拒絶反応が起こらない気持ち(慣れ)
講師
D Maruo
東京大学大学院情報理工学系研究科電子情報学専攻修了。専門は量子力学。量子力学の数値シミュレーションの結果を解釈するうちに、データ分析に興味を持ったため、データ分析の道を歩むことに。 現在LINE株式会社にてデータ分析業務に従事。好きなデータは時系列。嫌いなデータはクライアントログ。
会場へのアクセス方法
週末はビル正面玄関が閉まっているため、開始10分前より随時内側から開錠いたします。 ビル正面玄関前でお待ちいただきますようお願い致します。 https://imgur.com/a/XteLG
遅刻される方は、入り口に着かれましたら、skillupai.tokyo@gmail.comまでご連絡ください。 スタッフがお迎えに行きます。
ビル館内では飲食物の購入はできませんので、飲食物は事前に購入の上、ご来場ください。
講座中(休憩時間など)にビル外に外出される際は、スタッフまでお声がけください。 また携帯をご持参頂き、お戻りの時間をskillupai.tokyo@gmail.comまでご連絡ください。 ビル正面玄関へ、スタッフがお迎えに上がります。
当日のお持物
ご自身のノートPC
筆記用具
通信環境に関して
基本的にはこちらでWi-Fi環境を確保したいと考えておりますが、wifiが使えない日がないとも限らないのでwifiは自己責任でお願いいたします。(現在開講中の講座にて会場にWi-Fi環境が無い場合、ご自身のスマートフォンのデザリングなどで対応されております)
講座までの準備
なし
領収書
【Paypalでお支払いの場合】 PayPal発行の受領書が領収書となります。 受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。 (当社よりの重複しての領収書発行は行えません)
備考
- 2回目受講枠に関しましては、過去に同じ分野の講座を受講された方のみ、お申し込みが可能です。受講履歴を確認させていただきます
- 長時間ですので、ところどころ休憩を挟みます
- 勉強会内容を撮影もしくは録音することは、ご遠慮ください
- 個人ブログへの記述については、良識の範囲内でお願いいたします
- 講義コンテンツは全てスキルアップAIに帰属していますので、複製はご遠慮ください
運営団体
https://www.skillupai.com
講座に関するお問い合わせは、info@skillupai.comまでお願いいたします。
新規会員登録
このイベントに申し込むには会員登録が必要です。
アカウント登録済みの方はログインしてください。
※ ソーシャルアカウントで登録するとログインが簡単に行えます。
※ 連携したソーシャルアカウントは、会員登録完了後にいつでも変更できます。