【オブジェクト指向編】Pythonによるクラス入門
参加枠 | 申込形式 | 参加費 | 参加者 |
---|---|---|---|
前払い
|
先着順 |
3,500円
クレジットカード払い
|
7人 / 定員8人 |
2回目の参加
|
先着順 | 無料 |
2人
/ 定員1人 (キャンセル待ち1人)
|
イベント内容
概要
本講座では、オブジェクト指向編としてPythonにおけるクラスを扱います。
対象者は、「Pythonの基本文法はある程度理解したが、クラスの使い方がわからない、もっとPythonを使いこなせるようになりたい」という方々です。
オブジェクト指向は多くのプログラミング言語において、中核となる考え方です。これを理解することで、より効率の良いプログラムが書け、Pythonを使うのがさらに楽しくなっていきます! 本講座では、クラスの入門から自分でクラスの構造を考えるコツまでをわかりやすく解説いたします。Pythonにおける「オブジェクト指向・クラス」を最短で学びたいという方には非常にオススメな内容です!
※当日は実戦形式で進めていきますので、Python3をインストールしたPCの持参をお願いいたします。
講座を通じて得られること
・オブジェクト指向プログラムの理解
・クラスの扱い方の習得
・演習問題を通じた、自らでクラスの構造を考える力
カリキュラム
・クラスとは
・クラス変数
・インスタンス変数
・クラスを使う関数
・コンストラクタとデストラクタ
・カプセル化
・クラスの継承
※ 当日予告なく時間配分・内容が変更になる可能性がございます。
事前準備
Python3のインストールをお願いいたします。
Pythonのインストール、パッケージの導入方法についてご不明点あれば、可能な範囲で対応いたしますので、info@to-kei.netまでご連絡ください。
※講座の進行は「jupyter notebook」を使います。同じ実行環境で受講したい方は、インストールをお勧め致します。
こんな人にオススメ
・Pythonのfor文,if文など基本的な文法を理解している方(文法に自信のない方はこちらの講座の受講後に当講座の受講をおすすめいたします。)
・オブジェクト指向のプログラミング経験がない方
・機械学習や深層学習をPythonで実装しようと思っている方
講師
宮本光
東京大学工学部機械工学科を修了。現在は東京大学大学院にてpython機械学習を用いた労働者のストレス推定に関する研究に従事。
吉川武文
東京大学大学院にて機械学習を用いた生物データ解析の研究を行う。学部では生物情報科学を専攻。生物から得られるビッグデータの解析や生物学における理論のシミュレーション、モデリングなどにも精通。東京大学理科二類最高点合格、日本生物学オリンピック金賞・本選一位などの受賞歴を持つ。
持ち物
・Python3の実行環境をインストール済みのPC(windows Mac)
※インストールでお困りの方はinfo@to-kei.netまでご連絡いただければ、可能な範囲で対応致します。
※講座では「jupyter notebook」を使います。同じ実行環境で受講したい方は、インストールをお勧めします。
領収書について
【Paypalの方】
決済処理後にPaypalから送付されるメール内容、またはPaypalの取引履歴から該当項目を確認の上、「詳細」をご覧ください。それらが領収書の代わりとなります。また、クレジットカード会社発行の利用明細書も領収書としてご利用いただけます。(当社より重複しての発行は行えません)
【Stripeで事前決済の方】
クレジットカード会社が発行する明細を領収書の代わりとしてご利用ください。当社より重複しての領収書発行は行なっておりません。
【当日現金払いの方】
講座後のアンケートにて、「領収書が必要」にチェックを入れるようにお願いいたします。領収書をメールにて送付させていただきます。
受付・入場時間
開始の15分前から
※なるべく5分前までにお入りください。
※途中参加も可能です。
お問い合わせ
・メールでのお問い合わせは、info@to-kei.net までご連絡ください。
・こちらで⇨LINE@からもお問い合わせいただけます。(推奨)
注意事項
・リクルーティング、勧誘、採用活動など、目的に沿わない行為につきまして、主催者が相応しくないと判断した場合は即刻退出処分とします。全員が気持ちよく過ごすことが出来るよう、ご協力をお願い致します。
・講座内で扱うコンテンツは全て「全人類がわかる統計学」に帰属しています。複製はご遠慮ください。
・個人ブログへの講義コンテンツの掲載はご遠慮ください。
全人類がわかる統計学とは
統計学の学習サイト、全人類がわかる統計学を運営、管理している団体です。統計学とその関連分野について、出来るだけわかりやすく多くの人々に届けるということを目指して活動しています。
参加費のお支払いについて
ご利用可能なクレジットカードをご用意いただき、お支払い手続きを行ってください。
新規会員登録
このイベントに申し込むには会員登録が必要です。
アカウント登録済みの方はログインしてください。
※ ソーシャルアカウントで登録するとログインが簡単に行えます。
※ 連携したソーシャルアカウントは、会員登録完了後にいつでも変更できます。