Pythonで学ぶ時系列データ解析入門
参加枠 | 申込形式 | 参加費 | 参加者 |
---|---|---|---|
前払い
|
先着順 |
3,500円
クレジットカード払い
|
7人 / 定員8人 |
2回目の参加(同じ講座)
|
先着順 | 無料 | 0人 / 定員1人 |
イベント内容
概要
当講座は、統計学や機械学習に関する知識があまりない方(正規分布の基本的な性質は知っておく必要あり)を対象とし、時系列解析の基本的なモデルの理解と実装をできるようになってもらうことを目的とした講座です。
時系列解析は、為替データや株価予測などの経済データ以外にも、SNSやWEBサイトのPV数を用いた売上予測にも適用できるなど、様々な分野で活用されています。その中でも、時系列解析の基本と呼ばれる「ARモデル、MAモデル、ARMAモデル,ARIMAモデル」の理論の説明と実データ(航空機の乗客データ)を解析しながらのハンズオン形式での実装を取り扱います。
受講に際しては、高校レベルの数学と、Pythonの基本的な文法(if文,for文,関数)を理解していれば問題ありません。2時間で時系列データ解析をする上での基礎を身につけることができます。
当日は実戦形式で進めていきますので、Python3をインストールしたPCの持参をお願いいたします。
※また、当講座は「為替データで学ぶ時系列データ処理入門」の内容とほぼ同等の内容で、解析データを変更し、よりわかりやすくした講座です。
※当講座でPythonの基本文法の解説は行いません。Pythonの基本が不安な方はPython入門講座を先に受講することをお勧めいたします。
講座を通じて得られること
・時系列データ分析の基本の理解
・AR,MA,ARMA,ARIMAモデルの理論の理解
・AR,MA,ARMA,ARIMAモデルのPythonでの実装体験
・上記各種モデル選択の方法
内容
・解析データの説明
・回帰分析の説明
・時系列データを扱う上での注意点
・AR,MA,ARMA,ARIMAモデルの理論の説明
・AR,MA,ARMA,ARIMAモデルの理論の実装
・モデル評価手法・選択手法の解説
※ 当日予告なく時間配分・内容が変更になる可能性がございます。
事前準備
Python3のインストールをお願いいたします。
また、以下のパッケージを当講座では利用します。当日までに動作確認をお願いいたします。
・statsmodel
・pandas
・numpy
・matplotlib
Pythonのインストール、パッケージの導入方法についてご不明点あれば、可能な範囲で対応いたしますので、info@to-kei.netまでご連絡ください。
※講座の進行は「jupyter notebook」を使います。同じ実行環境で受講したい方は、インストールをお勧め致します。
こんな人にオススメ
・Pythonのfor文,if文など基本的な文法を理解している方(文法に自信のない方はこちらの講座の受講後に当講座の受講をおすすめいたします。)
・時系列データを用いてトレンド予測をしたい方
・これから為替や仮想通貨の変動予測をしたい方
講師
小林悠
大学院にて複雑な最適化問題を解くためのアルゴリズムや機械学習への応用研究に従事。機械学習における最適化手法の改善手法を提案し、深層学習による自然言語処理への応用について国際会議で発表経験あり。また大学時代は、学科で4年連続成績トップになり、三度の表彰を受ける。現在は、深層学習による自然言語処理を用いた対話型システムやそのユーザ満足度について研究している。
持ち物
・Python3の実行環境をインストール済みのPC(windows Mac)
※インストールでお困りの方はinfo@to-kei.netまでご連絡いただければ、可能な範囲で対応致します。
※講座では「jupyter notebook」を使います。同じ実行環境で受講したい方は、インストールをお勧めします。
領収書について
【Stripeで事前決済の方】
クレジットカード会社が発行する明細を領収書の代わりとしてご利用ください。
【Paypalの方】
決済処理後にPaypalから送付されるメール内容、またはPaypalの取引履歴から該当項目を確認の上、「詳細」をご覧ください。それらが領収書の代わりとなります。また、クレジットカード会社発行の利用明細書も領収書としてご利用いただけます。
【別途領収書発行が必要な方】
別途発行手数料として1000円頂きます。必要な方はinfo@to-kei.netまでご連絡ください。領収書発行手数料と受講料金を合算した金額で発行いたします。
受付・入場時間
開始の15分前から
※なるべく5分前までにお入りください。
※途中参加も可能です。
お問い合わせ
・メールでのお問い合わせは、info@to-kei.net までご連絡ください。
・こちらで⇨LINE@からもお問い合わせいただけます。(推奨)
注意事項
・リクルーティング、勧誘、採用活動など、目的に沿わない行為につきまして、主催者が相応しくないと判断した場合は即刻退出処分とします。全員が気持ちよく過ごすことが出来るよう、ご協力をお願い致します。
・講座内で扱うコンテンツは全て「全人類がわかる統計学」に帰属しています。複製はご遠慮ください。
・個人ブログへの講義コンテンツの掲載はご遠慮ください。
・最小遂行人数は「3名」です。開催日の前日までにこの人数に達しない場合は中止となります。ただし、複数の媒体で募集を行っているので、本サイトの申込者数が最小遂行人数に達しない場合でも開催になる場合がございます。もし、中止が決定した場合はその時点で「全額返金」し、登録しているメールアドレスにご連絡させていただきます。
全人類がわかる統計学とは
統計学の学習サイト、全人類がわかる統計学を運営、管理している団体です。統計学とその関連分野について、出来るだけわかりやすく多くの人々に届けるということを目指して活動しています。
参加費のお支払いについて
ご利用可能なクレジットカードをご用意いただき、お支払い手続きを行ってください。
新規会員登録
このイベントに申し込むには会員登録が必要です。
アカウント登録済みの方はログインしてください。
※ ソーシャルアカウントで登録するとログインが簡単に行えます。
※ 連携したソーシャルアカウントは、会員登録完了後にいつでも変更できます。