TECH PLAY

実務のための「機械学習」と「AI」

2,090円 (税込)

楽天

実務のための「機械学習」と「AI」

書籍情報

発売日:

著者/編集:和田 尚之

出版社:工学社

発行形態:単行本

書籍説明

内容紹介

現在では、「医療分野」「事前予測システム」「猛暑予測システム」「気象災害予測システム」など、「機械学習」や「AI」は、当たり前のように実社会に溶け込んできています。本書は、こうした現状を踏まえ、「AIが専門でない技術者や研究者」など、さまざまな分野の人が、実際に「機械学習」「AI」を使って、実務に活用できることを考えて執筆したものです。

目次

第1章 データの構造 1-1 Big Data 1-2 Small Data 1-3 One Data 第2章  データのスケール(情報量・感覚量) 2-1 情報量 2-2 感覚量 第3章  「Fractal次元」を利用した中小河川の流域治水への応用 3-1 あいまいな次元 3-2 「Fractal次元」を利用した 中小河川の流域治水への応用 3-3 1次元から0次元の「はざま」の視点で捉える過疎化の「カントール集合化」のモデル 第4章 数値データの解析 4-1 #7119救急車を呼ぶ前に (Projection Plot:影響の大きい要因探査) 4-2キュウリの病害の画像解析 4-3 季節変動を受けるバラつきのある時系列データ 第5章 「文字データ」の解析 5-1 文字データの処理(文字データの数値化) 5-2 不確実な尺度をもつデータの解析 5-3 野菜の成長評価の分析 欠測値の多いデータ 第6章 数値と文字データの混在型データの解析 6-1 米国での輸入自動車の価格評価と予測 6-2 ワインの選好―「学習データ」と「テストデータ」を使う方法(深層学習:Deep Learning) 6-3 「アンケート・データ」の解析

著者情報

和田 尚之

宮城県気仙沼生まれ、東京日本橋人形町で過ごす。 日本大学在学中渡米、カリフォルニア大学バークレー校教授ガレット・エクボ氏の事務所で環境論の研究。 卒業後、日本大学数理工学科登坂宜好教授の研究室で、環境分野での境界要素法の研究。 1998年に長野に移住。 2003年、州信大学大学院工学系研究科博士後期課程修了(奥谷 巖教授・研究室)。地元の大学で非常勤講師として10年教鞭を取る。 その後、慶應義塾大学の武藤佳恭教授のもとで自然エネルギーを使った観光・地域活性化や機械学習の教育啓蒙活動などを行なっている。 専門は地域学(自己組織化臨界状態理論)、数理学(データサイエンス・機械学習)。 現在、技建開発(株)教育センター長。工学博士、技術士、1級建築士、専門社会調査士。

和田, 尚之

類似書籍