【ゼロから学ぶ】ディープラーニング理論入門

2019/04/10(水)19:00 〜 22:00 開催
ブックマーク
参加枠申込形式参加費 参加者
前払い
先着順 3,500円
クレジットカード払い
満席 / 定員11人
2回目の参加(同じ講座)
先着順 無料 1人 / 定員1人

イベント内容

【ゼロから学ぶ】ディープラーニング理論入門

概要

本講座では、ディープラーニングの最も単純な構造であるニューラルネットワークの仕組みをわかりやすくお伝えいたします。

ディープラーニングを実装するためのフレームワークは急激に充実して来ていて、実装のハードルは下がりつつあります。しかし、より適切にあるいは効果的にこの技術を使えるようになるには、原理の理解が欠かせません。本講座では、ディープラーニングの学習や予測のメカニズムを理論ベースで解説いたします。講義では、基礎的な内容から理解が難しいとされる誤差逆伝播法までを網羅し、ニューラルネットワークの動作原理の完全理解を目指します。

「ディープラーニングのはじめの一歩を踏み出したい方」から「実装したことはあるが理論も知りたいという方」まで、幅広い方々にオススメな内容となっております。

※当講座の想定受講者は、高校の数学の基礎がわかる方です。具体的には、微分、総和記号(シグマ)の基本を理解していれば問題ありません。
※受講後は【tensorflowで学ぶ】ディープラーニング実装入門に進んでいただくと実装の流れもマスターしていただけます。

この講座で得られること

  • ニューラルネットワークの学習・予測のメカニズムの理解

内容

  • 機械学習の歴史
  • 機械学習の基本
  • ニューラルネットワークとは
  • 活性化関数
  • 多層パーセプトロン
  • 損失関数と最適化
  • 誤差逆伝播法の仕組み
  • ディープラーニングの流れ
  • RNN、CNNの紹介


※内容は一部変更になることがございます。

講座一覧のフローチャート

どの講座から受講したら良いのかわからないというような方は、下記のフローチャートを参考にしていただければと思います。

Alt text

持ち物

  • PC・タブレットなど(資料閲覧用)
  • メモ用紙(計算用)

こんな人におすすめ

  • ディープラーニングやニューラルネットワークを学びたい方
  • データ分析を行う上で強力な分析手法、予測モデルが必要な方
  • 人工知能の仕組み、今と未来、大枠を掴み、世界を広げたい方

講師

吉川武文
東京大学大学院にて機械学習を用いた生物データ解析の研究を行う。学部では生物情報科学を専攻。生物から得られるビッグデータの解析や生物学における理論のシミュレーション、モデリングなどにも精通。東京大学理科二類最高点合格、日本生物学オリンピック金賞・本選一位などの受賞歴を持つ。

領収書

【Stripeで事前決済の方】
クレジットカード会社が発行する明細を領収書の代わりとしてご利用ください。

【Paypalの方】
決済処理後にPaypalから送付されるメール内容、またはPaypalの取引履歴から該当項目を確認の上、「詳細」をご覧ください。それらが領収書の代わりとなります。また、クレジットカード会社発行の利用明細書も領収書としてご利用いただけます。

【別途領収書発行が必要な方】
別途発行手数料として1000円頂きます。必要な方はinfo@to-kei.netまでご連絡ください。領収書発行手数料と受講料金を合算した金額で発行いたします。

受付・入場時間

開始の15分前から

問い合わせ

・メールでのお問い合わせは、info@to-kei.net までご連絡ください。
・こちらで⇨LINE@からもお問い合わせいただけます。(推奨)

注意事項

  • 講義のコンテンツは全て「全人類がわかる統計学」に帰属していますので、複製はご遠慮ください。
  • 個人ブログへの講義コンテンツの掲載はご遠慮ください。
  • リクルーティング、勧誘、採用活動など、目的に沿わない行為につきまして、主催者が相応しくないと判断した場合は即刻退出処分とします。全員が気持ちよく過ごすことが出来るよう、ご協力をお願い致します。

全人類がわかる統計学とは

株式会社AVILENが運営するサービスです。統計学・機械学習の学習用サイト全人類がわかる統計学を運営、管理するほか、社会人向けのAI人材やデータサイエンティスト育成のための教育事業を行なっております。 統計学や機械学習を、出来るだけわかりやすく多くの人々に届けるということを目指して活動しています。

参加費のお支払いについて

本イベントの参加費は、クレジットカードでの事前支払いとなります。
ご利用可能なクレジットカードをご用意いただき、お支払い手続きを行ってください。

新規会員登録

このイベントに申し込むには会員登録が必要です。
アカウント登録済みの方はログインしてください。



※ ソーシャルアカウントで登録するとログインが簡単に行えます。

※ 連携したソーシャルアカウントは、会員登録完了後にいつでも変更できます。

関連するイベント