TECH PLAY

基礎からのニューラルネット -人工知能の基盤技術ー

2,860円 (税込)

楽天

基礎からのニューラルネット -人工知能の基盤技術ー

書籍情報

発売日:

著者/編集:申 吉浩/園田 隆史/甘利 丈慈/高井 絢之介/室田 佳亮

出版社:工学社

発行形態:単行本

書籍説明

内容紹介

本書は、「深層学習」の「仕組み」に興味をもつ人々のために、「深層学習」の基礎である「人工ニューラルネット」の原理を解説することを目的として編まれた書籍である。第1章では、人工知能研究の歴史を簡潔にまとめる。第2章は、最も基本的な「階層型ニューラルネット」(パーセプトロン)の仕組みを詳説。第3章では、物理学と人工知能研究の接点について述べる。第4章は、「深層学習」の発展の原動力となった「畳み込みネットワーク」「回帰ネットワーク」「長・短期記憶」「トランスフォーマ」の本質に焦点を絞った簡潔な説明を狙う。

目次

■ニューラルネットの歴史―「パーセプトロン」から「深層学習」まで― はじめに パーセプトロン 「線形非分離問題」と「深層化」 「深層学習」の誕生から現在まで ■階層型ニューラルネットモデル 脳神経網と「人工ニューラルネット」 「単層パーセプトロン」と「誤り訂正学習」 「損失関数」による限界突破 勾配消失問題 入力が複数の場合 階層型ニューラルネットモデルの万能性 「深層化」と「バックプロパゲーション」 ■非階層型ニューラルネットモデル 「深層学習」の基礎技術 「階層型」と「非階層型」 Hopfieldモデル ボルツマンマシン 「非階層ニューラルネット」の事例 ■「深層学習」への誘ない 「深層学習」の幕開け 「深層学習」を支える技術 「深層学習」の応用

著者情報

園田 隆史

●園田 隆史 1956年 長崎生まれ 1985年 日本大学大学院理工学研究科物理学専攻 博士後期課程修了 理学博士 同年 富士ゼロックス(株) 入社 現在 学習院大学および大妻女子大学 非常勤講師

園田, 隆史, 1956-

室田 佳亮

●室田 佳亮 1998年 東京生まれ 現在・東京大学大学院理学系研究科物理学専攻修士2年

室田, 佳亮, 1998-

未定

甘利 丈慈

●甘利 丈慈 1999年 東京生まれ 現在・学習院大学大学院自然科学研究科2年

甘利, 丈慈, 1999-

申 吉浩

●申 吉浩 1960年 大韓民国ソウル生まれ 1990年 東京大学大学院理学系研究科数学専門課程博士課程単位取得退学 2007年 Carnegie Mellon CyLab Japan 教授 2010年 兵庫県立大学大学院応用情報科学研究科教授 現在・学習院大学計算機センター教授・博士(工学)

申, 吉浩, 1960-

髙井 絢之介

●髙井 絢之介 1998年 茨城生まれ 現在・学習院大学大学院自然科学研究科2年

髙井, 絢之介, 1998-

類似書籍