データサイエンス教本(第2版)
書籍情報
発売日 : 2023年11月21日
著者/編集 : 牧野 浩二/橋本 洋志
出版社 : オーム社
発行形態 : 単行本
ページ数 : 372p
書籍説明
内容紹介
Pythonでデータサイエンスの理論と実践を学ぶ データサイエンスは、「データを科学的に扱う」学問分野です。近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。本書は、データサイエンスの基礎となる統計分析からパターン認識(機械学習)、時系列データ分析、深層学習などを、Pythonを使って実際に分析しながら学ぶものです.データの取り扱い、確率・統計の基礎といった基本的なところから、パターン認識、深層学習といった統計・機械学習手法、時々刻々と変化する時系列データの分析などの解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。第2版にあたっては深層学習を大幅に拡充し、自然言語処理、生成系(AutoEncoder、GAN)などの近年重要視されるテーマを取り上げました。
目次
1章 はじめに
2章 データの扱いと可視化
3章 確率の基礎
4章 統計の基礎
5章 回帰分析
6章 パターン認識
7章 時系列データ分析
8章 深層学習の基礎
9章 深層学習による画像処理
10章 深層学習による画像処理
11章 生成系深層学習
12章 深層強化学習
索引
2章 データの扱いと可視化
3章 確率の基礎
4章 統計の基礎
5章 回帰分析
6章 パターン認識
7章 時系列データ分析
8章 深層学習の基礎
9章 深層学習による画像処理
10章 深層学習による画像処理
11章 生成系深層学習
12章 深層強化学習
索引
著者情報
牧野 浩二
橋本 洋志