なっとく!AIアルゴリズム
書籍情報
発売日 : 2021年06月16日
著者/編集 : Rishal Hurbans/株式会社クイープ
出版社 : 翔泳社
発行形態 : 単行本
書籍説明
内容紹介
AI(人工知能)を構成する基本的なアルゴリズムを平易に解説
目次
第1章 人工知能を直観的に理解する
1.1 人工知能とは何か
1.2 人工知能の略史
1.3 問題の種類と問題解決のパラダイム
1.4 人工知能の概念を直観的に理解する
1.5 人工知能アルゴリズムの用途
本章のまとめ
第2章 探索の基礎
2.1 計画と探索
2.2 計算のコスト:スマートアルゴリズムの意義
2.3 探索アルゴリズムに適用できる問題
2.4 状態を表現する:問題空間と解を表すフレームワークの作成
2.5 知識なし探索:盲目的な解の探索
2.6 幅優先探索:深さよりも幅を優先する探索
2.7 深さ優先探索:幅よりも深さを優先する探索
2.8 知識なし探索アルゴリズムのユースケース
2.9 補足情報:グラフの種類について
2.10 補足情報:グラフを表すその他の方法
本章のまとめ
第3章 知的探索
3.1 ヒューリスティクスの定義:知識に基づく推測
3.2 知識あり探索:ガイダンスに従って解を求める
3.3 敵対探索:変化する環境で解を求める
本章のまとめ
第4章 進化的アルゴリズム
4.1 進化とは何か
4.2 進化的アルゴリズムに適用できる問題
4.3 遺伝的アルゴリズム:ライフサイクル
4.4 解空間をコード化する
4.5 解の個体群を作成する
4.6 各個体の適合度を計測する
4.7 親を適合度に基づいて選択する
4.8 親から個体を繁殖させる
4.9 次の世代を選択する
4.10 遺伝的アルゴリズムのパラメータを設定する
4.11 遺伝的アルゴリズムのユースケース
本章のまとめ
第5章 高度な進化的アプローチ
5.1 進化的アルゴリズムのライフサイクル
5.2 別の選択方式
5.3 実数値エンコーディング:実数を扱う
5.4 順序エンコーディング:シーケンスを扱う
5.5 木構造エンコーディング:階層を扱う
5.6 一般的な進化的アルゴリズム
5.7 進化的アルゴリズムの用語集
5.8 進化的アルゴリズムの他のユースケース
本章のまとめ
第6章 群知能:蟻
6.1 群知能とは何か
6.2 蟻コロニー最適化に適用できる問題
6.3 状態の表現:経路と蟻をどのように表すか
6.4 蟻コロニー最適化アルゴリズムのライフサイクル
6.5 蟻コロニー最適化アルゴリズムのユースケース
本章のまとめ
第7章 群知能:粒子
7.1 粒子群最適化とは何か
7.2 より技術的な観点から見た最適化問題
7.3 粒子群最適化に適した問題
7.4 状態の表現:粒子はどのように表されるか
7.5 粒子群最適化のライフサイクル
7.6 粒子群最適化アルゴリズムのユースケース
本章のまとめ
第8章 機械学習
8.1 機械学習とは何か
8.2 機械学習に適用できる問題
8.3 機械学習のワークフロー
8.4 決定木による分類
8.5 よく知られているその他の機械学習アルゴリズム
8.6 機械学習アルゴリズムのユースケース
本章のまとめ
第9章 人工ニューラルネットワーク
9.1 人工ニューラルネットワークとは何か
9.2 パーセプトロン:ニューロンの表現
9.3 人工ニューラルネットワークを定義する
9.4 順伝播:訓練済みの人工ニューラルネットワークを使う
9.5 逆伝播:人工ニューラルネットワークを訓練する
9.6 活性化関数の選択肢
9.7 人工ニューラルネットワークを設計する
9.8 人工ニューラルネットワークの種類とユースケース
本章のまとめ
第10章 Q学習による強化学習
10.1 強化学習とは何か
10.2 強化学習に適用できる問題
10.3 強化学習のライフサイクル
10.4 ディープラーニングによる強化学習
10.5 強化学習のユースケース
本章のまとめ
1.1 人工知能とは何か
1.2 人工知能の略史
1.3 問題の種類と問題解決のパラダイム
1.4 人工知能の概念を直観的に理解する
1.5 人工知能アルゴリズムの用途
本章のまとめ
第2章 探索の基礎
2.1 計画と探索
2.2 計算のコスト:スマートアルゴリズムの意義
2.3 探索アルゴリズムに適用できる問題
2.4 状態を表現する:問題空間と解を表すフレームワークの作成
2.5 知識なし探索:盲目的な解の探索
2.6 幅優先探索:深さよりも幅を優先する探索
2.7 深さ優先探索:幅よりも深さを優先する探索
2.8 知識なし探索アルゴリズムのユースケース
2.9 補足情報:グラフの種類について
2.10 補足情報:グラフを表すその他の方法
本章のまとめ
第3章 知的探索
3.1 ヒューリスティクスの定義:知識に基づく推測
3.2 知識あり探索:ガイダンスに従って解を求める
3.3 敵対探索:変化する環境で解を求める
本章のまとめ
第4章 進化的アルゴリズム
4.1 進化とは何か
4.2 進化的アルゴリズムに適用できる問題
4.3 遺伝的アルゴリズム:ライフサイクル
4.4 解空間をコード化する
4.5 解の個体群を作成する
4.6 各個体の適合度を計測する
4.7 親を適合度に基づいて選択する
4.8 親から個体を繁殖させる
4.9 次の世代を選択する
4.10 遺伝的アルゴリズムのパラメータを設定する
4.11 遺伝的アルゴリズムのユースケース
本章のまとめ
第5章 高度な進化的アプローチ
5.1 進化的アルゴリズムのライフサイクル
5.2 別の選択方式
5.3 実数値エンコーディング:実数を扱う
5.4 順序エンコーディング:シーケンスを扱う
5.5 木構造エンコーディング:階層を扱う
5.6 一般的な進化的アルゴリズム
5.7 進化的アルゴリズムの用語集
5.8 進化的アルゴリズムの他のユースケース
本章のまとめ
第6章 群知能:蟻
6.1 群知能とは何か
6.2 蟻コロニー最適化に適用できる問題
6.3 状態の表現:経路と蟻をどのように表すか
6.4 蟻コロニー最適化アルゴリズムのライフサイクル
6.5 蟻コロニー最適化アルゴリズムのユースケース
本章のまとめ
第7章 群知能:粒子
7.1 粒子群最適化とは何か
7.2 より技術的な観点から見た最適化問題
7.3 粒子群最適化に適した問題
7.4 状態の表現:粒子はどのように表されるか
7.5 粒子群最適化のライフサイクル
7.6 粒子群最適化アルゴリズムのユースケース
本章のまとめ
第8章 機械学習
8.1 機械学習とは何か
8.2 機械学習に適用できる問題
8.3 機械学習のワークフロー
8.4 決定木による分類
8.5 よく知られているその他の機械学習アルゴリズム
8.6 機械学習アルゴリズムのユースケース
本章のまとめ
第9章 人工ニューラルネットワーク
9.1 人工ニューラルネットワークとは何か
9.2 パーセプトロン:ニューロンの表現
9.3 人工ニューラルネットワークを定義する
9.4 順伝播:訓練済みの人工ニューラルネットワークを使う
9.5 逆伝播:人工ニューラルネットワークを訓練する
9.6 活性化関数の選択肢
9.7 人工ニューラルネットワークを設計する
9.8 人工ニューラルネットワークの種類とユースケース
本章のまとめ
第10章 Q学習による強化学習
10.1 強化学習とは何か
10.2 強化学習に適用できる問題
10.3 強化学習のライフサイクル
10.4 ディープラーニングによる強化学習
10.5 強化学習のユースケース
本章のまとめ
著者情報
Hurbans, Rishal
rishal hurbans
クイープ
株式会社クイープ