【水曜お昼の雑談会】データサイエンスすいすい会 第7回「時系列のセンサーデータを扱ったPredictive Modelでの予測について」

2020/11/25(水)12:00 〜 13:00 開催
ブックマーク
参加枠申込形式参加費 参加者
参加者
先着順 無料 28人 / 定員50人

イベント内容

データサイエンスすいすい会

概要

データサイエンスに関する雑談を通して、すいすいデータサイエンスを推進できるような知見を貯めていくオンライン雑談会

GRIの分析官リーダ他が参加してテーマについてお話します
参加無料、お昼を食べながらお気軽にご参加ください

スケジュール

第7回 2020年11月25日(水)12:00~13:00

隔週で開催予定

参加方法

時間になりましたら、下記ZoomURLよりご自由にご参加ください

https://zoom.us/j/96152836275

内容

ビジネスシーンで扱うデータの多くは時系列データであり、予測に関して、数多くのモデルが存在します。今回は、NASAの研究の一つである飛行機のタービンエンジン機器のセンサーデータを用いて、故障予測をする話を中心にします。さらに、時系列データを扱った予測手法における、Predictive ModelとTime-Series Forecastingの違いを解説します。時系列データはデータの扱いが大変なため、MIT(マサチューセッツ工科大)で開発された自動特徴量生成ツールであるFeaturetoolsを紹介します(現在はAlteryxに買収されています)。

時系列データとは

Time-Series ForecastingとPredictive Modelでの予測の違いについて

Featuretoolsを用いた時系列データの前処理について

飛行機のタービンエンジン機器のセンサーデータを用いて、故障予測

ナビゲーター

古幡 征史 

株式会社GRI 取締役
Ph.D in Computer Science
GRIにて50以上のAI, BI, 分析基盤構築プロジェクトをリード
KPMGコンサルティング、University of Southern California、ドワンゴを経て、2016年9月より現職

 

参加対象

・データサイエンスに関心のある方

参加費

無料

機械学習活用やデータサイエンスに関する情報共有コミュニティ

自由にご参加いただけるSlackを用意しています
実践的に機械学習を活用するための議論やノウハウの共有を目的としています
すいすい会の内容についても活発に議論できればと思います
Slackはこちら

過去のすいすい会

第1回「ビジネスでAIを上手く活用するための問題設定法の共有」

動画はこちら→ https://youtu.be/ppkgYD69NDU

AIを実践的に活用する際、どのような問題を設定すべきか?
AIで解くべき問題が分かると、実践的なデータ利活用ができます
第1回では、サブスクリプション・ビジネス(解約防止、Life-Time Valueの予測)における問題設定の秘訣を話しました

第2回 「アンケートと機械学習で効率的な顧客理解の実践方法の共有」

動画はこちら→ https://youtu.be/-s1PcLQUBNI

アンケート回収数が少なくアンケート結果が眠っている企業も多いのではないでしょうか?
今回の「すいすい会」では、アンケートと機械学習の組み合わせの事例を紹介しました

第3回「機械学習の初心者卒業: 分類問題の精度評価手法と不均衡データの実践的な取り扱い」

動画はこちら→ https://youtu.be/q6WJDTOgotA

実社会では不均衡データを扱うのが普通ですが、教科書ではあまり触れられていないため、不均衡データの実践的な取り扱い方をお話ししました

第4回「自動機械学習での特徴量の作り方」

動画はこちら→ https://youtu.be/Ms52EnCRk8g

自動機械学習の工程の中で最も時間を要するのが予測ターゲットを説明する特徴量データの準備になります。特徴量の考え方、アンチパターン、モダンなアルゴリズムで不要な特徴量処理をお話しました。また、Tableauなどの可視化ツールで事前に分析しておくべきことと自動機械学習での特徴量エンジニアリングの使いどころをお伝えしました。

第5回「ForecastFlowで自動機械学習をやってみよう」

自動機械学習の仕事の進め方をForecastFlowのデモ(分類問題と回帰問題)を通して紹介しました。このデモは幕張で開催された「AI・業務自動化 展」より生放送でお送りしました。

第6回「予測スコアを用いた効果的な施策実施」

動画はこちら→ https://youtu.be/8Sm8ex6taE8

自動機械学習ForecastFlowを使うと、顧客一人一人のレベルで予測スコアを自動で算出できるようになります。これからの出来事が予測できるので、効率的に施策を実施することができます。その実行手順や考え方を説明します。

※動画や資料は弊社コーポレートサイトでもご覧いただけます

https://gri.jp/news/12924

新規会員登録

このイベントに申し込むには会員登録が必要です。
アカウント登録済みの方はログインしてください。



※ ソーシャルアカウントで登録するとログインが簡単に行えます。

※ 連携したソーシャルアカウントは、会員登録完了後にいつでも変更できます。

関連するイベント