Talk by Yusuke Narita and Kohei Yata: サイバー広告制度設計:バンディットデータからの効率的な因果機械学習, Yale University
イベント内容
インセンティブサイエンスの算法セミナー(発表は日本語で行われます).
Yusuke Narita and Kohei Yata (Yale Univerity)
サイバー広告制度設計:バンディットデータからの効率的な因果機械学習
What is the statistically most efficient way to do counterfactual policy evaluation and optimization with batch data of exploration feedback? For logged data from a class of contextual bandit algorithms, we consider generalized-method-of- moment offline estimators for the average treatment effect and the expected reward from a counterfactual policy. Our estimators are shown to minimize the asymptotic variance among all consistent estimators. We apply our estimators to evaluate and optimize online ad allocation.
といったお話のあと、バンディット・因果推論・経済制度設計の交差点についてプロの皆さんにいくつかの疑問と話題を提示し、ブレストする予定です.
注意事項
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。
新規会員登録
このイベントに申し込むには会員登録が必要です。
アカウント登録済みの方はログインしてください。
※ ソーシャルアカウントで登録するとログインが簡単に行えます。
※ 連携したソーシャルアカウントは、会員登録完了後にいつでも変更できます。