IoT寺子屋:深層学習の数学勉強会_演習分厚版_0411

イベント内容

IoT寺子屋:深層学習の数学勉強会 土日演習分厚版 


【今回はマイコンボードも部品もないハンズオン=基本ノートに鉛筆で】

ただし、最後にちょっとエクセル使った演習をしますのでパソコンお持ちください


【習得スキル】

・AIの学習の動作原理を数式できちんと理解します。
 (FNN,CNN,RNNすべてに共通なこと)

・AIの論文がとりあえず読めるようになる(目標)

前提知識は高校の数学をだいたい思い出せるくらいです
最近は高校で行列の計算ををやらないようなのでそこはしっかりご説明する予定

【実習アジェンダ】

■Timeスケジュール

時間 内容
11:00 - 11:30 受付
11:30 - 11:50 フィジカルコンピューティング
 ・フィジカルコンピューティングとは何か?
 ・AI・ビッグデータ・IoTの関係
 ・非構造データの活用の現在
 ・センサーデータがもたらす可能性
 ・本日の講座のカバー範囲
11:50 - 12:10 確率分布・情報量とシャノンの符号化・クロスエントロピー・KL情報量
12:10 - 12:30 6面体サイコロと8面体サイコロを使ったKL情報量の計算実験
12:30 - 13:30 お昼休憩 (近くのコンビニでご休憩や会場のお店でのランチもOKです
13:30 - 14:00 偏微分・行列の計算
13:30 - 14:00 偏微分・行列の計算の演習
14:00 - 14:50 AIの推論(順伝搬)
14:50 - 15:00 休憩
15:00 - 16:30 AIのパラメータ補正の一連の手続きとそれを支える基本的な考え
 ・オンライン学習/オフライン学習/ミニバッチ学習の考え方
 ・確率的勾配降下法
 ・誤差逆伝搬法
16:30 - 17:00 IntelFPGAの紹介。BNNアルゴリズムの概説

※一応17:00まで場所は確保できています


場所は銀座線田原町駅の目の前、こんな時期にふらつくのもどうかと思いますが、浅草めぐりを兼ねていらっしゃいませんか

【配布物】

•講習資料(紙ベース。カラーで図解した資料と白黒の問題集のようなもの)※資料は手書きノートも含みます。
 ノートのもととなった本もありますので受講者にはご紹介します。
 お持ちの方は持ってきていただけるといいかもしれません(なくてもいいようにしています)

【参加者にお持ちいただくもの】

•ノートと鉛筆

【テーマ選定のポリシー】


IoT寺子屋は普段電子工作でガジェットを作るハンズオン提供してます。
しかしながらセンサーデータ集めてくるだけではなかなか有益な仕事ができないと考えます。

学習済みのAIモデルが自由に落としてきて使えるという今日このごろ
AIを組み込みエッジに乗せてなんかつくるということがまさに現実化してきました
しかも大企業でなくても個人でできる・・・そんな時代

さてオリジナルなアイデアをAIの分類器にかけようとすると
どうしても学習をさせる必要が出てきます

どうやってデータを作るんだろう・・・どうやって学習させるんだろう・・・

このAIの数学は教師データはそろってるものだと思ってパラメータ調整を進める ロジックを学びつくす内容です



いままで寺子屋いらした方は知ってらっしゃると思いますが
ほんとに解説しつくすので
電子工作しないひとにも十分にまなんでもらうことがあります。

Kerasで1行・・・・でないAIをきちんと学ぼう・・・・という趣旨です。

しっかり理解していただけるように説明していきます。
後半の逆誤差伝搬が深層学習の本質です。・・・がAIの会社の人間でもうまく説明できない人がいます。
これをきちんと理解すると自分で深層学習のコードが組めると思います。

なお直近でFPGAボードの使い方入門勉強会を予定しています

【開催条件のご説明】

オンラインの開催も考えたのですが、やはり聞いてくれてる方の顔色見て伝わってるのかなとかわからないと怖い
何人かもう開催されないのかと問い合わせもあり、3人以上の参加者いれば実施します。
大部屋(10人まで可をMAX6名で実施)で密を避けるつもりです。

人数制限してるので単価が上がってしまいます。申し訳ございませんがこれでよろしくお願いします。
E-検定の講座何日も聞く前に聞きたかったといってくださる方もいてその方たちの感想は内容の割に格安とのこと
よろしく検討お願いします

4/5日まで様子みて3人いないと(お店にキャンセル無料でかけられるので)開催されません・・・
(どたどたーっとキャンセルされるとリスクこわいのでごめんなさい。)

【講師自己紹介】

大邦将猛(おおくにまさたけ) 生産管理/在庫管理コンサルタント。技術士(経営工学)。

京都大学工学部/大学院工学研究科卒業。(専攻 原子核工学。学部と修士課程)
大手製造業で生産工程の研究員5年 ベンチャーITベンダー6年(半年スウェーデン在住勤務) 
コンサルティングファーム3年(一年オランダ在住勤務) 大手ITベンダー10年勤務

数学は趣味で卒業後もこつこつ問題解いたりしてます。
学生時代に一番頑張った勉強は量子力学や場の量子論といった物理学です。卒論や修士論文も核物理学の内容(QED/QCD)でした。
(微積線形代数やテンソル、量子力学の勉強会も考えたのですが、
 すでにたくさんあるしすぐに仕事で役立つように思えないのでこんな内容にしてます)

数学と物理については塾などで難関目指す生徒用のコースから、中学生補習講座まで担当していた経験があります。
教え方がうまいかどうか・・・わかりませんが、東大などの難関に受かった生徒もいるし、
躓いた人が何がわかってないかを判断できると思いますのでハンズオンをコーチャー的にできればと思います。


【お問い合わせ】

当ページの問い合わせ先リンクからお願いします。
当日道に迷った場合はお店への電話もOKです^^

注意事項

※ こちらのイベント情報は、外部サイトから取得した情報を掲載しています。
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。

類似しているイベント