TOP

【8月期 応用数学シリーズ】機械学習・ディープラーニングのための最適化

イベント内容

講座体系

機械学習の理解に不可欠な数学の知識に関して、初学者でも基礎から実践まで体系化に学べるように、基礎数学シリーズと応用数学シリーズの2シリーズで展開しています。

シリーズ 分野 前提知識
基礎数学シリーズ 微分、線形代数、確率統計 不要
応用数学シリーズ 多変量解析、ベイズ推論のための確率統計アドバンス、最適化、情報理論 基礎数学シリーズの指定の講座修了レベル

直近のシリーズ

基礎数学

日程 時間 講義名
8/11(土) 14:00-19:00 機械学習・ディープラーニングのための微分基礎
8/12(日) 14:00-19:00 機械学習・ディープラーニングのための確率・統計DAY1
8/18(土) 14:00-19:00 機械学習・ディープラーニングのための線形代数
8/19(日) 14:00-19:00 機械学習・ディープラーニングのための確率・統計DAY2

応用数学

日程 時間 講義名
8/25(土) 14:00-19:00 機械学習・ディープラーニングのための多変量解析
8/26(日) 14:00-19:00 ベイズ推論のための確率統計アドバンス
9/01(土) 14:00-20:30 機械学習・ディープラーニングのための最適化
9/02(日) 14:00-17:30 機械学習・ディープラーニングのための情報理論
  • お得な応用数学講座セットは、HP からお申し込みを受け付けております。
  • HPからのセットでのお申し込みは、銀行振込、領収書・請求書・申込書希望にも対応可能です。
  • 講座内で全て消化できない方向けに、HPから動画も購入いただけるようにしました。

概要

AIに関するほとんどの書籍や学習コンテンツは、数式を用いた説明をしており、数学に苦手意識をもつ方にとっては、難解な分野だという雰囲気を醸しています。

しかし、AI自体が数式で知能を表現しようという試みであるとも言えるため、数学を学ばずにAIを理解することはできません。

スキルアップAIの数学講座は、前提知識不要レベルの基礎数学講座から、機械学習を理解するのに直結する応用数学講座まで、豊富なラインナップで講座を展開しています。

今回は、『最適化』を取り上げます。ディープラーニングをはじめとする多くの機械学習手法は、最適化問題と呼ばれる問題を解けば良いことが知られております(機械学習はなんらかの関数を定義して、それを最適化することがほとんどです)。そのため最適化問題の理論を理解できれば、機械学習の様々な理論を効果的に習得することに繋がります。

本講座では特に、回帰分析やサポートベクタマシンの学習などで現れる「凸最適化理論」に焦点を当て、解説いたします。計5時間の講座の中で、演習問題を交えながら凸最適化の理論を解説し、機械学習のより一層の理解を目指します。

受付・入場時間

開始の10分前から

カリキュラム

0.導入
    凸最適化とは
    機械学習での最適化問題の例
    最適化問題とその用語
    凸集合・凸関数
    凸最適化問題
1.最小二乗法(回帰直線を例に)
    目的関数の導出
    正規方程式
    最小二乗法の幾何学的意味*
    最小二乗法の数値計算法*
2.凸2次計画問題(サポートベクタマシンを例に)
    目的関数・制約条件の導出
    ラグランジュ関数
    KKT条件
    サポートベクタマシンの性質の考察*
    双対理論*
3.正則化(Lassoを例に)
    元々のモチベーション
    l0/l1, l2正則化
4.計算法(勾配法)
    勾配法の導出
    確率的勾配降下法
    ニューラルネットワークの学習(凸でない最適化問題への応用)

*は時間の都合上、割愛させていただく可能性があります。

前提知識

・スキルアップAIの講座「微分」・「線形代数」を受講していること。
・もしくは、修了相当の知識を有していること(カリキュラムの項目を見てご確認ください。https://www.skillupai.com/math)

対象者

・微分や行列を計算し、機械学習の手法をより理解したい方
・ライブラリのパラメータの意味を理論的に理解したい方

会場へのアクセス方法

週末はビル正面玄関が閉まっているため、開始10分前より随時内側から開錠いたします。
ビル正面玄関前でお待ちいただきますようお願い致します。
https://imgur.com/a/XteLG

遅刻される方は、入り口に着かれましたら、skillupai.tokyo@gmail.comまでご連絡ください。
スタッフがお迎えに行きます。

ビル館内では飲食物の購入はできませんので、飲食物は事前に購入の上、ご来場ください。

講座中(休憩時間など)にビル外に外出される際は、スタッフまでお声がけください。
また携帯をご持参頂き、お戻りの時間をskillupai.tokyo@gmail.comまでご連絡ください。
ビル正面玄関へ、スタッフがお迎えに上がります。

当日のお持物

ご自身のノートPC(あると資料を眺めながら受講いただけます)
筆記用具・紙5枚程度

講座までの準備

なし

領収書

Paypalでお支払いの場合】
PayPal発行の受領書が領収書となります。
受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。
(当社よりの重複しての領収書発行は行えません)

備考

* 長時間ですので、ところどころ休憩を挟みます
* 勉強会内容を撮影もしくは録音することは、ご遠慮ください
* 個人ブログへの記述については、良識の範囲内でお願いいたします
* 講義コンテンツは全てスキルアップAIに帰属していますので、複製はご遠慮ください

運営団体

https://www.skillupai.com

講座に関するお問い合わせは、info@skillupai.comまでお願いいたします。

注意事項

※ こちらのイベント情報は、外部サイトから取得した情報を掲載しています。
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。
2018/09/01(土)
14:00〜20:30
参加者
定員13人
会場
スキルアップ・ビデオテクノロジーズ株式会社 BF1スタジオ
東京都渋谷区桜丘町9番8号 KN渋谷3ビル

注目のポジション