TOP

秋の陣【8月期 応用数学シリーズ】ベイズ推論のための確率・統計アドバンス

イベント内容

講座体系

機械学習の理解に不可欠な数学の知識に関して、初学者でも基礎から実践まで体系化に学べるように、基礎数学シリーズと応用数学シリーズの2シリーズで展開しています。

シリーズ 分野 前提知識
基礎数学シリーズ 微分、線形代数、確率統計 不要
応用数学シリーズ 多変量解析、ベイズ推論のための確率統計アドバンス、最適化、情報理論 基礎数学シリーズの指定の講座修了レベル

直近のシリーズ

基礎数学

日程 時間 講義名
8/25(土) 09:00-14:00 機械学習・ディープラーニングのための微分基礎
8/25(土) 15:00-20:00 機械学習・ディープラーニングのための確率・統計DAY1
8/26(日) 09:00-14:00 機械学習・ディープラーニングのための線形代数
8/26(日) 15:00-20:00 機械学習・ディープラーニングのための確率・統計DAY2

応用数学

日程 時間 講義名
9/08(土) 09:00-14:00 機械学習・ディープラーニングのための多変量解析
9/08(土) 15:00-20:00 ベイズ推論のための確率統計アドバンス
9/09(日) 09:00-12:30 機械学習・ディープラーニングのための情報理論
9/09(日) 13:30-20:00 機械学習・ディープラーニングのための最適化
  • お得な応用数学講座セットは、HP からお申し込みを受け付けております。
  • HPからのセットでのお申し込みは、銀行振込、領収書・請求書・申込書希望にも対応可能です。
  • 講座内で全て消化できない方向けに、HPから動画も購入いただけるようにする予定です。

概要

AIに関するほとんどの書籍や学習コンテンツは、数式を用いた説明をしており、数学に苦手意識をもつ方にとっては、難解な分野だという雰囲気を醸しています。

しかし、AI自体が数式で知能を表現しようという試みであるとも言えるため、数学を学ばずにAIを理解することはできません。

スキルアップAIの数学講座は、前提知識不要レベルの基礎数学講座から、機械学習を理解するのに直結する応用数学講座まで、豊富なラインナップで講座を展開しています。

今回は、最近ゆっくりと脚光を浴び始めている「ベイズ推論による機械学習」です。
確率統計学において「最も」重要であると言っても過言ではない「ベイズの定理」を軸として生まれるこの手法は、より高度な確率統計論を駆使し、確率分布のパラメータを「確率的に」予測するという、ディープラーニングとは全く異なる趣を持つ理論です。
ディープラーニングが潜在的に抱える種々の問題を解消するきっかけとなる「ベイズ推論による機械学習」を学ぶために必要な、高度な確率統計の知識をわかりやすくお届けします。

受付・入場時間

開始の10分前から

カリキュラム

  • 積分の基本
  • 確率変数の期待値、分散、標準偏差
  • 代表的な確率分布
    • ベルヌーイ分布
    • マルチヌーイ(カテゴリカル)分布
    • 二項分布
    • ポアソン分布
    • 正規分布
    • ベータ分布
    • ガンマ分布
    • ディリクレ分布
  • ベイズの定理の復習
  • ベイズ更新とベイズ推論
  • 共役事前分布
  • ベイズ推論によるパラメータの推定(ハンズオンを交えて)
    • ベータ分布によるベルヌーイ分布のパラメータ推定
    • ガンマ分布によるポアソン分布のパラメータ推定
    • 正規分布のパラメータ推定

*若干変更なる場合があります。

対象者(受講にあたっての前提知識)

「微分」「線形代数」「確率統計Day1, Day2」講座を受講もしくは、修了相当の理解をしていること。

会場へのアクセス方法

アイテック阪急阪神株式会社 本社

〒553-0001 大阪市福島区海老江1丁目1番31号 阪神野田センタービル

阪神野田駅、地下鉄千日前線野田阪神駅又はJR東西線海老江駅から徒歩約2分

※ビルへの入り方はこちらをご参照ください。

※ビル正面玄関でスタッフが待機しております。入館時に出席をとらせていただきます。

講師

S Akematsu

東北大学理学部数学科卒業。個人事業を経て、高専向け学習塾「ナレッジスター」の経営などを行う教育特化型企業「合同会社Haikara City」を創業。現在、高専教育、社会人向けIT教育、WEB教育コンテンツの発信等を主に行う。著書 線形空間論入門 。現在は、画像解析システムの研究開発企業に対して、DeepLearningに関する数理コンサルティング、数学指導なども行う。

当日のお持物

ご自身のノートPC
筆記用具

講座までの準備

【動作環境】
MacOSX 10.9 以上
Windows 7 以上(64bit必須)
メモリ8GB以上必須
※8GB未満でも受講して頂くことは可能ですが、大きなデータを扱う演習の際に不具合が発生する可能性があります。
メモリ不足が原因の不具合についてはサポートすることができませんので、あらかじめご了承ください。

【環境構築について】
Anaconda3-5.0.1以上の事前インストールをいただき、ブラウザでnotebookが表示されるところまでをお願いいたします。
こちらを参考にしてください。
https://goo.gl/FRWrax
※各自で必ず当日までに環境構築のみはお願いいたします。
もし環境構築等でご不明な点等あれば、事前にご連絡いただければご案内します。

領収書

【Paypalでお支払いの場合】
PayPal発行の受領書が領収書となります。
受領書ページは、PayPalの支払い完了ページで「印刷用受領書を見る」をクリックすると表示されます。
(当社よりの重複しての領収書発行は行えません)

備考

  • 長時間ですので、ところどころ休憩を挟みます
  • 勉強会内容を撮影もしくは録音することは、ご遠慮ください
  • 個人ブログへの記述については、良識の範囲内でお願いいたします
  • 講義コンテンツは全てスキルアップAIに帰属していますので、複製はご遠慮ください

運営団体

https://www.skillupai.com

講座に関するお問い合わせは、info@skillupai.comまでお願いいたします。

注意事項

※ こちらのイベント情報は、外部サイトから取得した情報を掲載しています。
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。