TOP

【tensorflowで学ぶ】CNN実装入門

イベント内容

【tensorflowで学ぶ】CNN実装入門

概要

本講座のテーマはCNN(畳み込みニューラルネットワーク)です。講座内では、CNNのメカニズムを解説しながらtensorflowを用いた実装をハンズオン形式で行います。

CNNは近年の画像認識分野のもっとも重要な技術の一つです。実際、最近開催されている画像認識コンペティションではほぼ全ての手法がCNNをベースとしています。また、画像だけに限らず、音声認識や自然言語処理への応用研究も盛んに行われ、論文などで一定の成果が報告されています。

本講座ではCNNの基礎をわかりやすく解説し、実際にtensorflowで実装することでその威力を体験していただきます。受講後は、理論ベースでCNNの仕組みを理解し、実装も可能になっていることを目指します。

【参加条件】
・Python3の基本文法を理解している方
・tensorflowで単純なニューラルネットワーク(多層パーセプトロン)を写経でも構築したことがある方

上記の条件を満たしていない方は以下の講座を合わせて受講していただくことをこ検討ください。
・Python3の基本文法に不安のある方は、【初心者歓迎】Python入門講座
・tensorflowを用いたニューラルネットワーク構築のハンズオンを体験したい方は、【tensorflowで学ぶ】ディープラーニング実装入門
・ニューラルネットワークの基本原理を学びたい方は、【ゼロから学ぶ】ディープラーニング理論入門

事前準備

Python3のインストールをお願いいたします。
また、以下のパッケージを当講座では利用しますので、当日までに動作確認をお願いいたします。

  • jupyter notebook
  • numpy
  • tensorflow
  • tensorboard
  • matplotlib

この講座で得られること

  • ディープラーニング及びCNNの基本原理と実装方法の習得
  • CNNでなにができるか俯瞰的に捉えられる

講座一覧のフローチャート

どの講座から受講したら良いのかわからないというような方は、下記のフローチャートを参考にしていただければと思います。

Alt text

内容

  • CNNの概要、応用例
  • Convolution(畳み込み)とは何か
  • 畳み込み層
  • プーリング層
  • TensorFlowによる実装
  • 実装したモデルの学習


※内容は一部変更になることがございます。

こんな人におすすめ

  • 最短ルートでディープラーニングにおけるCNNを学びたい方
  • 人工知能による画像認識のプロジェクトなどに興味がある方

講師

励驍彦
早稲田大学大学院経済学部を修了。現在は、データ分析と機械学習のスキルを用いて、各業界のビジネス的な課題を洗い出し、解決するためのモデルの開発及び実装に携わっている。

持ち物

  • Python3の実行環境と必要ライブラリ(tensorflow, pandas, numpy)をインストール済みのPC。
    ※ インストールでお困りの方はinfo@to-kei.netまでご連絡いただければ、可能な範囲で対応致します。
    ※ 講座の進行は「jupyter notebook」を使います。同じ実行環境で受講したい方は、インストールをお勧め致します。

領収書

【Stripeで事前決済の方】
クレジットカード会社が発行する明細を領収書の代わりとしてご利用ください。当社より重複しての領収書発行は行なっておりません。

【当日払いの方】
講座後のアンケートにて、「領収書が必要」にチェックを入れるようにお願いいたします。領収書をメールにて送付させていただきます。

【Paypalの方】
決済処理後にPaypalから送付されるメール内容、またはPaypalの取引履歴から該当項目を確認の上、「詳細」をご覧ください。それらが領収書の代わりとなります。また、クレジットカード会社発行の利用明細書も領収書としてご利用いただけます。(当社より重複しての発行は行えません)

受付・入場時間

開始の15分前から

問い合わせ

イベントに関するお問い合わせはinfo@to-kei.netまでご連絡ください。

注意事項

  • 講義のコンテンツは全て「全人類がわかる統計学」に帰属していますので、複製はご遠慮ください。
  • 個人ブログへの講義コンテンツの掲載はご遠慮ください。
  • リクルーティング、勧誘、採用活動など、目的に沿わない行為につきまして、主催者が相応しくないと判断した場合は即刻退出処分とします。全員が気持ちよく過ごすことが出来るよう、ご協力をお願い致します。

全人類がわかる統計学とは

統計学の学習サイト、全人類がわかる統計学を運営、管理している団体です。統計学とその関連分野について、出来るだけわかりやすく多くの人々に届けるということを目指して活動しています。

注意事項

※ こちらのイベント情報は、外部サイトから取得した情報を掲載しています。
※ 掲載タイミングや更新頻度によっては、情報提供元ページの内容と差異が発生しますので予めご了承ください。
※ 最新情報の確認や参加申込手続き、イベントに関するお問い合わせ等は情報提供元ページにてお願いします。
2019/01/10(木)
19:00〜22:00
参加者
3人 / 定員5人
会場
秋葉原駅徒歩5分
台東区台東1丁目11番4号 誠心Oビル3F

注目のポジション

TECH PLAYでイベントをはじめよう。

TECH PLAYでは、テクノロジーに関連したイベントの告知やグループ運営のための機能を無料でご利用いただけます。まずはグループを作ってみましょう。