
- TOP
- ã¿ã°äžèЧ
- Oracle
Oracle
ã€ãã³ã
ãã¬ãžã³
æè¡ããã°
2021 幎㫠AWS ã«å
¥ç€ŸããŠä»¥æ¥ãç§ã¯ Amazon Elastic Compute Cloud (Amazon EC2) ã€ã³ã¹ã¿ã³ã¹ãã¡ããªãŒãæé·ããã®ãèŠãŠããŸããããã®ããŒã¹ã¯ä»ã§ãé©ããé ããŸãããAWS Graviton æèŒã®ã€ã³ã¹ã¿ã³ã¹ãããç¹æ®ãªé«éã³ã³ãã¥ãŒãã£ã³ã°ãªãã·ã§ã³ãŸã§ãããã©ãŒãã³ã¹ã®éçãããã«æŒãäžããæ°ããã€ã³ã¹ã¿ã³ã¹ã¿ã€ããæ°ãæããšã«ãªãªãŒã¹ãããŠããããã«æããããŸãã2026 幎 2 æã®æç¹ã§ãAWS 㯠1,160 ãè¶
ãã Amazon EC2 ã€ã³ã¹ã¿ã³ã¹ã¿ã€ããæäŸããŠããããã®æ°ã¯ä»ãå¢ãç¶ããŠããŸãã 2026 幎 2 æ 16 æ¥é±æåã®ãã¥ãŒã¹ã§ãã Amazon EC2 M8azn ã€ã³ã¹ã¿ã³ã¹ã®äžè¬æäŸã¯ãã®è¯ãäŸã§ããM8azn ã€ã³ã¹ã¿ã³ã¹ã¯ã第 5 äžä»£ AMD EPYC ããã»ããµãæèŒããé«åšæ³¢ã§é«ãããã¯ãŒã¯ã®æ±çšã€ã³ã¹ã¿ã³ã¹ã§ãããã¯ã©ãŠãå
ã§æãé«ã 5 GHz ã®æå€§ CPU åšæ³¢æ°ãæäŸããŠããŸããåäžä»£ã® M5zn ã€ã³ã¹ã¿ã³ã¹ãšæ¯èŒããå ŽåãM8azn ã€ã³ã¹ã¿ã³ã¹ã¯æå€§ 2 ååªããã³ã³ãã¥ãŒãã£ã³ã°ããã©ãŒãã³ã¹ã4.3 ååºãã¡ã¢ãªåž¯åå¹
ã10 å倧ãã L3 ãã£ãã·ã¥ãæäŸããŸãããŸããM5zn ããæå€§ 2 åã®ãããã¯ãŒã¯ã¹ã«ãŒããããæå€§ 3 åã® Amazon Elastic Block Store (Amazon EBS) ã¹ã«ãŒããããæäŸããŸãã 第 6 äžä»£ã® Nitro Card ã䜿çšã㊠AWS Nitro System äžã«æ§ç¯ããã M8azn ã€ã³ã¹ã¿ã³ã¹ã¯ãèªåè»ãèªç©ºå®å®ããšãã«ã®ãŒã黿°éä¿¡åéã«ããããªã¢ã«ã¿ã€ã 財ååæããã€ããã©ãŒãã³ã¹ã³ã³ãã¥ãŒãã£ã³ã°ãé«é »åºŠååŒãCI/CD ãã€ãã©ã€ã³ãã²ãŒã ãã·ãã¥ã¬ãŒã·ã§ã³ã¢ããªã³ã°ãªã©ã®ã¯ãŒã¯ããŒãåãã§ãããã®ã€ã³ã¹ã¿ã³ã¹ã§ã¯ãã¡ã¢ãªãš vCPU ã®æ¯çã 4:1 ã«ãªã£ãŠããã2 åãã 96 åã® vCPU æ°ãæå€§ 384 GiB ã®ã¡ã¢ãªãæèŒãã 9 çš®é¡ã®ãµã€ãº (2 çš®é¡ã®ãã¢ã¡ã¿ã«ã¿ã€ããå«ã) ã§å©çšã§ããŸãã詳现ã«ã€ããŠã¯ã Amazon EC2 M8azn ã€ã³ã¹ã¿ã³ã¹ããŒãž ãã芧ãã ããã 2026 幎 2 æ 9 æ¥é±ã®ãªãªãŒã¹ 以äžã¯ã2026 幎 2 æ 9 æ¥é±ã«è¡ããããã®ä»ã®çºè¡šã®äžéšã§ãã Amazon Bedrock ã 6 ã€ã®ãã«ãããŒãžããªãŒãã³ãŠã§ã€ãã¢ãã«ã®ãµããŒãã远å â Amazon Bedrock ããDeepSeek V3.2ãMiniMax M2.1ãGLM 4.7ãGLM 4.7 FlashãKimi K2.5ãQwen3 Coder Next ã®ãµããŒããéå§ããŸããããããã®ã¢ãã«ã¯ãããã³ãã£ã¢æšè«ãšãšãŒãžã§ã³ãã£ãã¯ã³ãŒãã£ã³ã°ã®ã¯ãŒã¯ããŒãã«å¯Ÿå¿ããŸããDeepSeek V3.2 ãš Kimi K2.5 ã¯æšè«ãšãšãŒãžã§ã³ãã£ãã¯ã€ã³ããªãžã§ã³ã¹ã察象ãšããŠãããGLM 4.7 ãš MiniMax M2.1 ã¯å€§èŠæš¡ãªåºåãŠã£ã³ããŠã§ã®èªåŸã³ãŒãã£ã³ã°ããµããŒãããQwen3 Coder Next ãš GLM 4.7 Flash ã¯æ¬çªç°å¢ãããã€çšã®ã³ã¹ãå¹çã«åªããä»£æ¿ææ®µãæäŸããŸããProject Mantle ãæŽ»çšãããããã®ã¢ãã«ã¯ãOpenAI API 仿§ãšã®èšå®äžèŠã®äºææ§ãæäŸããŸãã ãã®ãªãªãŒã¹ã«ããã仿§äž»å°åã® AI éçºããŒã«ã§ãã Kiro ã§ã® DeepSeek v3.2ãMiniMax 2.1ãQwen3 Coder Next ãšãã£ãæ°ãããªãŒãã³ãŠã§ã€ãã¢ãã«ã®äœ¿çšãå¯èœã«ãªããŸãã Amazon Bedrock ã AWS PrivateLink ã®ãµããŒããæ¡å€§ â Amazon Bedrock ãã bedrock-runtime ãšã³ããã€ã³ãã®æ¢åãµããŒãã«å ããŠã bedrock-mantle ãšã³ããã€ã³ãã§ã AWS PrivateLink ããµããŒãããããã«ãªããŸãããbedrock-mantle ãšã³ããã€ã³ãã¯ãAmazon Bedrock ã§æäŸãããå€§èŠæš¡ãªæ©æ¢°åŠç¿ã¢ãã«çšã®åæ£åæšè«ãšã³ãžã³ã§ãã Project Mantle ãæŽ»çšããŠããŸããProject Mantle ã¯ããµãŒãã¹å質å¶åŸ¡ãåãããµãŒããŒã¬ã¹æšè«ãèªååããããã£ãã·ãã£ç®¡çã«ãã£ãŠåŒãäžããããããã©ã«ãã«ã¹ã¿ããŒã¯ã©ãŒã¿ãOpenAI API 仿§ãšã®èšå®äžèŠã®äºææ§ãæäŸããŸããOpenAI API äºæãšã³ããã€ã³ãã® AWS PrivateLink ãµããŒãã¯ã14 ã® AWS ãªãŒãžã§ã³ã§ãå©çšããã ããŸãã䜿çšãéå§ããã«ã¯ãAmazon Bedrock ã³ã³ãœãŒã«ã«ã¢ã¯ã»ã¹ããããOpenAI API äºææ§ããã¥ã¡ã³ããåç
§ããŠãã ããã Amazon EKS Auto Mode ããããŒãžã Kubernetes æ©èœã®ããã®åŒ·åããããã®ã³ã°æ©èœãçºè¡š â Amazon EKS Auto Mode ã§ Amazon CloudWatch Vended Logs ã䜿çšãããã°é
ä¿¡ãœãŒã¹ãèšå®ã§ããããã«ãªããŸãããããã¯ãAuto Mode ã®ãããŒãžã Kubernetes æ©èœããã³ã³ãã¥ãŒãã£ã³ã°ã®èªåã¹ã±ãŒãªã³ã°ããããã¯ã¹ãã¬ãŒãžãè² è·åæ£ãããããããã¯ãŒãã³ã°ã«é¢ãããã°ãåéããããã«åœ¹ç«ã¡ãŸããå Auto Mode æ©èœã¯ãAWS èªèšŒãšæ¿èªãçµã¿èŸŒãŸãã CloudWatch Vended Logs é
ä¿¡ãœãŒã¹ãšããŠãæšæºã® CloudWatch Logs ãããäœãæéã§èšå®ã§ããŸãããã°ã¯ãCloudWatch LogsãAmazon S3ããŸã㯠Amazon Data Firehose ãå®å
ãšããŠé
ä¿¡ã§ããŸãããã®æ©èœã¯ãEKS Auto Mode ãæäŸãããŠãããã¹ãŠã®ãªãŒãžã§ã³ã§ãå©çšããã ããŸãã Amazon OpenSearch Serverless ãã³ã¬ã¯ã·ã§ã³ã°ã«ãŒãã®ãµããŒããéå§ â æ°ããã³ã¬ã¯ã·ã§ã³ã°ã«ãŒãã䜿çšããŠãç°ãªã AWS Key Management Service (AWS KMS) ããŒãæã€ã³ã¬ã¯ã·ã§ã³ã®å
šäœã§ OCU (OpenSearch Compute Unit) ãå
±æã§ããããã«ãªããŸãããã³ã¬ã¯ã·ã§ã³ã°ã«ãŒãã¯ãã³ã¬ã¯ã·ã§ã³ã¬ãã«ã®ã»ãã¥ãªãã£ãšã¢ã¯ã»ã¹å¶åŸ¡ãç¶æããªãããå
±æã³ã³ãã¥ãŒãã£ã³ã°ã¢ãã«ãéããŠå
šäœç㪠OCU ã³ã¹ããåæžããŸãããŸããæå€§ OCU å¶éã«å ããŠæå° OCU å²ãåœãŠãæå®ããããšãå¯èœã«ãªã£ããããé
å»¶ã®åœ±é¿ãåããããã¢ããªã±ãŒã·ã§ã³ã®èµ·åæã«ãããããŒã¹ã©ã€ã³ãã£ãã·ãã£ãä¿èšŒãããŸããã³ã¬ã¯ã·ã§ã³ã°ã«ãŒãã¯ãçŸåš Amazon OpenSearch Serverless ãæäŸãããŠãããã¹ãŠã®ãªãŒãžã§ã³ã§ãå©çšããã ããŸãã Amazon RDS ãã¹ãããã·ã§ããã®åŸ©å
æã«ãããããã¯ã¢ããèšå®ã®ãµããŒããéå§ â ã¹ãããã·ã§ãã埩å
æäœã®å®è¡åãšå®è¡äžã«ããã¯ã¢ããä¿ææéãšåžæããããã¯ã¢ãããŠã£ã³ããŠã衚瀺ãã倿Žã§ããããã«ãªããŸããããããŸã§ã埩å
ãããããŒã¿ããŒã¹ã€ã³ã¹ã¿ã³ã¹ãšã¯ã©ã¹ã¿ãŒã¯ã¹ãããã·ã§ããã¡ã¿ããŒã¿ããã®ããã¯ã¢ãããã©ã¡ãŒã¿å€ãç¶æ¿ãã倿Žã§ããã®ã¯åŸ©å
å®äºåŸã®ã¿ã§ãããããããã¯ãèªåããã¯ã¢ãããšã¹ãããã·ã§ããã®äžéšãšããŠããã¯ã¢ããèšå®ã衚瀺ãã埩å
æã«ãããã®å€ãæå®ãŸãã¯å€æŽã§ããããã«ãªãããã埩å
åŸã«å€æŽããå¿
èŠããªããªããŸãããã®æ©èœã¯ããã¹ãŠã® AWS åçšãªãŒãžã§ã³ãš AWS GovCloud (ç±³åœ) ãªãŒãžã§ã³ã«ãããã¹ãŠã® Amazon RDS ããŒã¿ããŒã¹ãšã³ãžã³ (MySQLãPostgreSQLãMariaDBãOracleãSQL ServerãDb2) ãš Amazon Aurora (MySQL äºæããã³ PostgreSQL äºæãšãã£ã·ã§ã³) ã§å©çšã§ããè¿œå æéã¯ããããŸããã AWS ã®ãç¥ããã«é¢ãã詳ãããªã¹ãã«ã€ããŠã¯ãã AWS ã®ææ°æ
å ± ãããŒãžãã芧ãã ããã è¿æ¥éå¬äºå®ã® AWS ã€ãã³ã ã«ã¬ã³ããŒã確èªããŠãè¿æ¥éå¬äºå®ã® AWS ã€ãã³ãã«ãµã€ã³ã¢ããããŸãããã AWS Summit â 2026 幎㮠AWS Summit ã«åå ããŸããããAWS Summit ã¯ãã¯ã©ãŠãããã³ AI é¢é£ã®æ°èãã¯ãããžãŒãæ¢æ±ãããã¹ããã©ã¯ãã£ã¹ã«ã€ããŠåŠã³ãæ¥çã®åæ¥è
ãå°éå®¶ãšã€ãªããããšãã§ããç¡æã®å¯Ÿé¢ã€ãã³ãã§ããSummit ã¯ã ã㪠(4 æ 1 æ¥)ã ãã³ãã³ (4 æ 22 æ¥)ã ãã³ã¬ããŒã« (4 æ 23ã24 æ¥) ã§éå¬ãããäºå®ã§ãã AWS AI and Data Conference 2026 â 3 æ 12 æ¥ã«ã¢ã€ã«ã©ã³ãã® Lyrath Convention Centre ã§éå¬ãããã1 æ¥éãã®ç¡æå¯Ÿé¢ã€ãã³ãã§ãããã®ã«ã³ãã¡ã¬ã³ã¹ã§ã¯ãAmazon BedrockãAmazon SageMakerãQuickSight ãçšãããšãŒãžã§ã³ãã®èšèšããã¬ãŒãã³ã°ãããã³ãããã€ã®ä»ããšãŒãžã§ã³ãã® AWS ããŒã¿ãµãŒãã¹ãšã®çµ±åããšãŒãžã§ã³ããå€§èŠæš¡ã«éçšããããã®ã¬ããã³ã¹ãã©ã¯ãã£ã¹ã®é©çšãšãã£ããããã¯ãåãäžããŸããã¢ãžã§ã³ãã«ã¯ãã¢ãŒããã¯ããéçºè
ãããžãã¹ãªãŒããŒåãã®æŠç¥çã¬ã€ãã³ã¹ãšãã³ãºãªã³ã©ããå«ãŸããŠããŸãã AWS Community Day â ã³ãã¥ããã£ãªãŒããŒãã¡ãã³ã³ãã³ããèšç»ã調éãæäŸããã³ãã¥ããã£äž»å°ã®ã«ã³ãã¡ã¬ã³ã¹ã§ããããã¯ãã«ã«ãã£ã¹ã«ãã·ã§ã³ãã¯ãŒã¯ã·ã§ããããã³ãºãªã³ã©ããè¡ãããŸãããã®ã€ãã³ãã¯ã ã¢ãŒã¡ãããŒã (2 æ 28 æ¥)ã ã¹ããã㢠(3 æ 11 æ¥)ã ãã㌠(3 æ 21 æ¥) ã§éå¬ãããäºå®ã§ãã AWS Builder Center ã«åå ããŠããã«ããŒãšã€ãªããããœãªã¥ãŒã·ã§ã³ãå
±æããéçºããµããŒãããã³ã³ãã³ãã«ã¢ã¯ã»ã¹ããŸãããããã¡ãã®ãªã³ã¯ãããä»åŸéå¬ããããã¹ãŠã® AWS äž»å°ã®å¯Ÿé¢ã€ãã³ãããã³ä»®æ³ã€ãã³ã ãš ããããããŒåãã®ã€ãã³ã ãã芧ãã ããã 2026 幎 2 æ 16 æ¥é±ã®ãã¥ãŒã¹ã¯ä»¥äžã§ãã2026 幎 2 æ 23 æ¥é±ã® Weekly Roundup ããæ¥œãã¿ã«! â Esra ãã®èšäºã¯ãWeekly Roundup ã·ãªãŒãºã®äžéšã§ããæ¯é±ãAWS ããã®è峿·±ããã¥ãŒã¹ãçºè¡šãç°¡åã«ãŸãšããŠãç¥ããããŸã! åæã¯ ãã¡ã ã§ãã
TechHarmonyãšã³ãžãã¢ããã°ã§ã¯ã AWSã»Oracle Cloudã»Azureã»Google Cloud ååéã®åè³è
ã«ãã©ãŒã«ã¹ããã€ã³ã¿ãã¥ãŒãéããŠãããŸã§ã®çµæŽãä»ã®åè³è
ã«èããŠã¿ããããšãã€ãªãã§ããã ãªã¬ãŒã€ã³ã¿ãã¥ãŒ ãããå±ãããŠããŸãã 第äžåŒŸã¯ãã2025 Japan AWS Jr. Championsã ãåè³ããã éäžç° ç§ïŒãŸãã ãã
ãïŒããã Japan AWS Jr. Champions ã¯ãAWSãç©æ¥µçã«åŠã³ãèªãã¢ã¯ã·ã§ã³ãèµ·ããããã®åãçµã¿ãåšå²ã«ãè¯ã圱é¿ãäžããŠããè¥æãšã³ãžãã¢ãéžåºãããããã°ã©ã ã§ãã æ¥ã
ã©ã®ããã«AWSãšåãåããã©ããªçµéšãç©ã¿éããŠããã®ãã ãããŠãåè³ã«è³ããŸã§ã®èæ¯ã«ã¯ãã©ã®ãããªãã£ãªã¢ã¹ããŒãªãŒããã£ãã®ã§ããããã æ¬ã€ã³ã¿ãã¥ãŒã§ã¯ãéäžç°ããã®ãããŸã§ã®çµæŽãAWSãžã®åãåãæ¹ãããã«ã次ã®åè³è
ãžèããŠã¿ããããšããŸã§ããã£ãããšã話ã䌺ããŸããã ãããã£ãŒã« 2025 Japan AWS Jr. Champions æå±ïŒ ITã€ã³ãã©ãµãŒãã¹äºæ¥ã°ã«ãŒã ã¯ã©ãŠããµãŒãã¹äºæ¥æ¬éš ã¯ã©ãŠããµãŒãã¹ç¬¬äºéš æ°åïŒ éäžç°ãç§ ãèªå·±ç޹ä»ã 2023幎床å
¥ç€ŸåŸãAWSå
è£œåæ¯æŽãµãŒãã¹ã ãã¯ãã«ã«ãšã¹ã³ãŒã ãã®ã¡ã³ããŒãšããŠã客æ§ãæ¯æŽãããŠããã ããŠããŸãã ãã¯ãã«ã«ãšã¹ã³ãŒãã§ã¯ãAWSå°å
¥æ€èšãããèšèšãæ§ç¯ãéçšæ¹åãŸã§å¹
åºãå
補åãåŸæŒããã€ã€ãã客æ§ã®èª²é¡è§£æ±ºã«åãçµãã§ããŸãã æ¬ç·š AWSãšã³ãžãã¢ã«ãªã£ãèæ¯ãæããŠãã ããã ããšããšæ
å ±å·¥åŠç§åºèº«ã§ããã°ã©ãã³ã°ã«éŠŽæã¿ããã£ããããã¢ããªã±ãŒã·ã§ã³éçºåžæã§å
¥ç€ŸããŸããã ãã ãæ°äººç ä¿®ã§æ¹ããŠã€ã³ãã©é åãåŠã³ãªãããŠãããã¡ã«ãã ãããã¯ãŒã¯ ã£ãŠ ããºã«ã¿ãã ã§ããããã㪠ã ãšæã£ãããšãã€ã³ãã©ã«é£ã³èŸŒããã£ãã ã«ãªããŸãããAWSãåããŠè§Šã£ãã®ããããªããæ°äººç ä¿®äžã§ããAWSã®æã€ã·ã§ã¢ã®å€§ãããè±å¯ãªãµãŒãã¹ããããŠãã®æè»æ§ã®è¯ãã«é
åãæãããããããã¯ã©ãŠãã®äžã§ãAWSãæ·±ãåŠã³ãããšããæããèœçããŸããã ç ä¿®åŸã«ã¯ ã AWSå
è£œåæ¯æŽãµãŒãã¹ããã¯ãã«ã«ãšã¹ã³ãŒãã ããŒã ã«é
å± ããã AWSã§èª²é¡ãæ±ããã客æ§ãšäŒŽèµ°ããªãããå
±ã«èª²é¡è§£æ±ºã«åãçµãæ¥ã
ãéã£ãŠããŸãã ã客æ§ãšå
±ã«æé·ããŠããéçšã§ãåŠã¶ããšã®æ¥œããã¯ãã¡ããã®ããšãè€éãªã·ã¹ãã ãã·ã³ãã«ã«æäŸããŠããç¹ã«é
åãæããAWSã®å¥¥æ·±ããæ¹ããŠèªèããŠããŸãïŒ ãšã³ãžãã¢ãšããŠå€§åã«ããŠãã䟡å€èгãä¿¡æ¡ã¯ãããŸããïŒ æ¥åã§å¿
èŠãªç¯å²ã«ãšã©ãŸãããèŠéãåºããããã«ææ°æè¡ã远ãç¶ããå§¿å¢ãæèããŠããŸããä»ãã䜿ãäºå®ããªããŠããç¥ã£ãŠããããšã§éžæè¢ãå¢ããèšèšãææ¡ã®è³ªãé«ããããšã«ã€ãªãããšèããŠããããã§ããè¿å¹Žã¯æè¡é²åã®ã¹ããŒããéåžžã«éããã¢ããããŒãã远ãã€ããŠããªããšæããå Žé¢ããããŸãããåãæ®ãããªãããé 匵ã£ãŠãã£ããã¢ããããŠããŸãã ãŸããç§ãã¡ã¯å
人ãã¡ã®ã¢ãŠããããã«å€ãæ¯ããããŠãããšæããŠããŸããã ãããããèªåã ã巚人ã®è©ã«ç«ã€ã ã ãã§çµãããã ã åŠãã ããšãèšèªåããã¢ãŠãããã ãšããŠæ®ãããšã倧åã«ããŠããŸãã èšèªå ããããšã§ èªåèªèº«ã®çè§£ãæŽçãããã ãã§ãªããåãæ©ã¿ãæ±ããŠãã人ããåããšããã§ã€ãŸãããŠãã人ã®å©ãã«ãªãã°ãšèããŠããŸãã ãšã³ã®ã€ãªããã倧åã«ããããšãä¿¡æ¡ ã®äžã€ã§ãã瀟å
ã®ä»éšçœ²ã¯ãã¡ãããä»ç€Ÿã®Jr. Championsãšã®äº€æµãéããŠãæ°ããçºæ³ããããŸã§æ°ã¥ããªãã£ãèŠç¹ãå€ãåŸãããšãã§ããŸããããããããšã³ã®ã€ãªããããçãŸããåºæ¿ããç»å£ã瀟å
ã§ã®AWS掻åãšãã£ã次ã®ã¢ã¯ã·ã§ã³ã®ã¢ã€ãã£ã¢ã«ã€ãªãã£ãŠããŸãã ãã®åºŠã¯åè³ããã§ãšãããããŸãïŒ åè³ã«è³ããŸã§ç¹ã«éç¹ã眮ããŠåãçµãã§ããããšã»ä¹ãè¶ãããã£ã¬ã³ãžãæããŠãã ããã å è³ã®æ±ºãæã¯ãèŠæãªããšã§ãç©æ¥µçã«ææŠãç¶ããããš ã ãšèããŠããŸãã 人åã§è©±ãããšã¯åŸæã§ã¯ãããŸããã§ããããå ã
ãšäŒããããèªåã«ãªããããŠãã€ãã³ãç»å£ãžã®ææŠãéããŸãããç©æ¥µçã«æãäžãç¶ããçµæãç»å£æ©äŒã«ãæµãŸãã2024幎床ã«ã¯ç»å£5åïŒç€Ÿå
2åã»ç€Ÿå€3åïŒã®çµéšãç©ãããšãã§ããŸããã ã è¿·ã£ãããšããããæãæãã ã ãèžã«ãäžæ©ãã€ç©ã¿éãã çµæãè©äŸ¡ã«ã€ãªãã£ãã®ã ãšæããŸãã åè³ããèªèº«ã®ãã£ãªã¢ãããŒã ã«äžãã圱é¿ã¯ãããŸããïŒ åè³ããã£ããã«ã2025幎床ããäžéšAWSããŒã±ãã£ã³ã°æ¥åã«æºããããŠããã ããŠããŸãã ããŒã±ãã£ã³ã°ããŒã ã«åç»ããããšã§ãæã
ã®åæãå€éšã®èŠç¹ããèŠãããããã«ãªã£ãããšã¯å€§ããªå€åã§ãã ããã¢ãŒã·ã§ã³æŽ»åãéããŠå€ããèŠãããšã§ãåæã®è¯ããæ¹åç¹ã客芳çã«æãçŽãããšãã§ãããšæã£ãŠããŸãã ãŸãããããŸã§æè¡è·ãšããŠã®ãã£ãªã¢ããèããŠããŸããã§ããããããŒã±ãã£ã³ã°ãšããæ°ããªè»žãå ãã£ãããšã§ãã£ãªã¢ã®å¹
ãåºãããŸããã æŽ»åã®äžã§AWSäºæ¥ã ã©ãããžãã¹ãšããŠçºå±ãããŠããã ãå
·äœçã«èããæ©äŒãå¢ããäŒç€Ÿã§åãäžã§ã® ããŒã±ãã£ã³ã°ã®èŠç¹ã®éèŠæ§ã宿 ããŠããŸãã ãã®äžå¹Žéã¯ã幎次ãéããŠããããã§å¿
èŠãšãªãèãæ¹ãåŠã¶è²Žéãªæ©äŒã ã£ããšæ¯ãè¿ã£ãŠããŸãã ä»åŸãå人ãšããŠãææŠããŠã¿ããæ°ããæè¡ã»åéããç®æããŠããç®æšã«ã€ããŠæããŠãã ããã AWS/ãªã³ãã¬ãã¹ã®ãããã¯ãŒã¯ç¥èã身ã«ã€ãããããã¯ãŒã¯ã¢ãŒããã¯ãã£ã®ææ¡ã«ã€ããŠããŒã ã®å
茩æ¹ãšåãç®ç·ã§è°è«ã§ãããšã³ãžãã¢ã«ãªãããã§ãã ãã¯ãã«ã«ãšã¹ã³ãŒãããŒã ã«ã¯ãé·å¹Žã¢ããªã±ãŒã·ã§ã³éçºãããŒã¿ã»ã³ã¿ãŒã®ãããã¯ãŒã¯æ§ç¯ã«æºãã£ãŠããã¡ã³ããŒãå€ãåšç±ããŠãããAWSã«éããªãå¹
åºãç¥èãæã£ãŠããç¹ã倧ããªé
åã ãšæããŠããŸãã AWSæŽã¯3幎ç®ãšãªãã ã¯ã©ãŠãã®èšèšã»éçšã®çµéš ã¯å¢ããŠããŸãããã ãªããïŒã·ããæ¡ä»¶ã«æºããäžã§ããªã³ãã¬ãã¹ã®ãããã¯ãŒã¯ç¥èäžè¶³ãçæ ããå Žé¢ããããŸããããŸãããªã³ãã¬ãã¹æŽã®é·ãã客æ§ã«å¯ŸããŠã¯ãã¯ã©ãŠãåäœã®èª¬æã§ã¯ãªãããªã³ãã¬ãã¹ãšã®æ¯èŒã亀ããŠèª¬æããæ¹ãçè§£ã»çŽåŸããã ãããããšæããŠããããã®ããã«ã ãªã³ãã¬ãã¹ãå«ãããããã¯ãŒã¯å
šäœã®çè§£ãäžå¯æ¬ ã ãšèããŠããŸãã ä»åŸãAWSã¯ãã¡ããã§ããããããã¯ãŒã¯ã軞ãšããã¯ã©ãŠããšãªã³ãã¬ãã¹ã©ã¡ããç©æ¥µçã«åŠã³ç¶ããŠãããŸãïŒ æ¬¡ã®ã€ã³ã¿ãã¥ãŒã¯åãJr. Championsã®ãäœè€ åªé³ãããã§ãïŒäœè€ããã«ãèããããããšã¯ãããŸããïŒ äœè€ããã¯ãæ¥åã§ã¯Oracle Databaseãæ±ã£ãŠãããšãèãããŸããã AWS ãš Oracle 䞊è¡ããŠã åŠã³ç¶ããç§èš£ ãæããŠãã ããïŒ éäžç°ãããããããšãããããŸããïŒ æåŸã«ãèªè
ã®æ¹ãžã¡ãã»ãŒãžããé¡ãããããŸãïŒ ç§èªèº«ãè¥æãšã³ãžãã¢ã®æš¡ç¯ãšãªããã ããããªãã¢ãŠãããããéããŠçæ§ãžã®è¯ã圱é¿ãäžãããããã ææŠ ããŠãããŸãïŒç§ã®æŽ»åãåäžä»£ã®ãšã³ãžãã¢ã«åºãããããããå
茩ã»åŸèŒ©ãšã®ç¹ããã«çºå±ããŠããã°ãã ã¯ã©ãŠãã«åŒ·ãSCSK ã ã®å®çŸã«å¯äžã§ããã客æ§ã«éå
ã§ãããšä¿¡ããŠããŸãã æ¬¡åã€ã³ã¿ãã¥ãŒã¯ã2025 Japan AWS Jr. Champions ãåè³ããã äœè€ åªé³ïŒããšã ãããšïŒããã§ãã æ¬¡åã®èšäºããæ¥œãã¿ã«ãåŸ
ã¡ãã ããïŒ
æ¬èšäºã¯ 2026/02/04ã«æçš¿ããã Auto Analyze in Aurora DSQL: Managed optimizer statistics in a multi-Region database ã翻蚳ããèšäºã§ãã Amazon Aurora DSQL ããã³ä»ã®ææ°ã®ãªã¬ãŒã·ã§ãã«ããŒã¿ããŒã¹ã·ã¹ãã ã«ãããŠãæ£ç¢ºãªçµ±èšæ
å ±ã¯ã¯ãšãªãã©ã³ã«ãããæãéèŠãªèŠå ã®äžã€ã§ããæªãã¯ãšãªãã©ã³ãè¯ãã¯ãšãªãã©ã³ã®ä»£ããã«èª€ã£ãŠéžæããŠããŸããšã100åã®æ§èœäœäžãåŒãèµ·ããå¯èœæ§ããããŸãããã©ã³ã®ãªã°ã¬ãã·ã§ã³ãçºçãããªã¹ã¯ãæå°åããããã«ãææ°ã®çµ±èšæ
å ±ãéèŠã§ãããã®æçš¿ã§ã¯ãDSQL ãªããã£ãã€ã¶ãŒçµ±èšãèªåçã«èšç®ãã確ççãã€äºå®äžã¹ããŒãã¬ã¹ãªææ³ã§ãã Aurora DSQL Auto Analyze ã«ã€ããŠè§£èª¬ããŸããPostgreSQL ã«ç²ŸéããŠãããŠãŒã¶ãŒã¯ã autovacuum analyze ãšã®é¡äŒŒæ§ãçè§£ããŠããã ããã§ãããã ã¯ãšãªããã©ãŒãã³ã¹ã«ãããçµ±èšæ
å ±ã®éèŠæ§ çµ±èšæ
å ±ãã¯ãšãªããã©ãŒãã³ã¹ã«äžãã圱é¿ã説æããããã«ããªããã£ãã€ã¶ãŒããã«ããŒãã«ã¹ãã£ã³ãŸãã¯ã€ã³ããã¯ã¹ã¹ãã£ã³ã䜿çšããŠããŒã¿ã«ã¢ã¯ã»ã¹ããããéžæã§ããåºæ¬çãªäŸãèŠãŠã¿ãŸããããçµ±èšæ
å ±ã®å¹æã説æããããã«ãå
éšãã©ã¡ãŒã¿ã䜿çšããŠAuto Analyzeãç¡å¹ã«ããŸãããã客æ§ã«ãšã£ãŠãAuto Analyze ã¯åžžã«æå¹ã«ãªã£ãŠãããç¡å¹ã«ãããªãã·ã§ã³ã¯ãããŸããã ãŸããint åã®å A ãštext åã®å B ãæã€ããŒãã«ãçæããŸãããŸããå A ã«ã€ã³ããã¯ã¹ãäœæããŸããæ¬¡ã«ããã®ããŒãã«ã« 600,000 è¡ãæ¿å
¥ããŸãããã®äŸã§ã¯ãå A ã«æ³šç®ããŸãã300,000 è¡ã¯ 0 ãã 299,999 ãŸã§ã® A å€ãå«ã¿ãŸããæ®ãã® 300,000 è¡ã¯ A å€ã 42 ã§ãã create table mytable (A int, B text); create index async mytableidx on mytable(A); SELECT 'INSERT INTO mytable SELECT generate_series(3000 * ' || i-1 || ', 3000 * ' || i || ' - 1), ''AWS Aurora DSQL is great'';' FROM generate_series(1, 100) i; \gexec SELECT 'INSERT INTO mytable SELECT 42, ''AWS Aurora DSQL is great'' FROM generate_series(1, 3000);' FROM generate_series(1, 100); \gexec 以äžã®ã¯ãšãªã䜿çšããŠã A å€ã 42 ã®è¡ã 300,001 è¡ããããšã確èªããŸãããããã£ãŠã A å€ã 42 ã®è¡ã¯å
šäœã®åå以äžãå ããŠããŸãã SELECT count(*) FROM mytable GROUP BY GROUPING SETS (A = 42); count -------- 299999 300001 (2 rows) 以äžã®ã³ãã³ããå®è¡ããŠã A å€ã 42 ã®å
šãŠã®è¡ãéžæããå Žåã«ããªããã£ãã€ã¶ãŒãã©ã®ãã©ã³ãéžæãããã芳å¯ããŠã¿ãŸãããã EXPLAIN ANALYZE SELECT * FROM mytable WHERE A = 42; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------------ Index Scan using mytableidx on mytable (cost=23193.32..34868.97 rows=92373 width=32) (actual time=15.926..5217.368 rows=300001 loops=1) Index Cond: (a = 42) -> Storage Scan on mytableidx (cost=23193.32..34868.97 rows=92373 width=32) (actual rows=300001 loops=1) -> B-Tree Scan on mytableidx (cost=23193.32..34868.97 rows=92373 width=32) (actual rows=300001 loops=1) Index Cond: (a = 42) -> Storage Lookup on mytable (cost=23193.32..34868.97 rows=92373 width=32) (actual rows=300001 loops=1) Projections: a, b -> B-Tree Lookup on mytable (cost=23193.32..34868.97 rows=92373 width=32) (actual rows=300001 loops=1) Planning Time: 3.367 ms Execution Time: 5228.314 ms (10 rows) éžæããããã©ã³ã«ã¯ã€ã³ããã¯ã¹ã¹ãã£ã³ãå«ãŸããŠããããšãããããŸãã A = 42 ãåæ°ãå ããããšãããæããã«ã€ã³ããã¯ã¹ããã®éæ¥åç
§ã®ã³ã¹ããé¿ããŠããã«ããŒãã«ã¹ãã£ã³ãéžæããããšãæåŸ
ãããŸãã ãªããã£ãã€ã¶ãŒãæé©ãªãã©ã³ãèŠã€ããã®ãå©ããããã«ãããŒãã«ã§ ANALYZE ãå®è¡ããŸãã ANALYZE mytable; ä»åºŠã¯éžæããããã©ã³ã«ãã«ããŒãã«ã¹ãã£ã³ãå«ãŸããŠããŸããã¯ãšãªã¯åå以äžã®æéã§å®äºããããã«ãªããŸããã EXPLAIN ANALYZE SELECT * FROM mytable WHERE A = 42; QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------------- Full Scan (btree-table) on mytable (cost=74756.80..87915.45 rows=296975 width=32) (actual time=1.179..1977.851 rows=300001 loops=1) -> Storage Scan on mytable (cost=74756.80..87915.45 rows=296975 width=32) (actual rows=300001 loops=1) Projections: a, b Filters: (a = 42) Rows Filtered: 299999 -> B-Tree Scan on mytable (cost=74756.80..87915.45 rows=597254 width=32) (actual rows=600000 loops=1) Planning Time: 5.055 ms Execution Time: 1989.230 ms (8 rows) Aurora DSQL ã¯ã©ã¹ã¿ãŒã§ãã®äŸãåçŸãããšãæåã§ analyze ãå®è¡ããåã§ãããã«ããŒãã«ã¹ãã£ã³ã䜿çšããé«éãªã¯ãšãªãã©ã³ãåŸãããããšãããããŸããAuto Analyze ãããã¯ã°ã©ãŠã³ãã§èªåçã«çµ±èšæ
å ±ãèšç®ãããã®ããã©ãŒãã³ã¹åäžãæäŸããŠãããŸãã Aurora DSQL ã«ããã Auto Analyze ãã®ã»ã¯ã·ã§ã³ã§ã¯ããŸã PostgreSQL ã® autovacuuming ã«ã€ããŠå確èªããŸããæ¬¡ã«ãAurora DSQL ã ãã«ãAWSãªãŒãžã§ã³ ç°å¢ã«ãããŠãäºå®äžç¡å¶éã®ã¹ã±ãŒã«ã§2ã€ã®æ§æèŠçŽ ãéã㊠PostgreSQL ã®åäœãæš¡å£ããæ¹æ³ã説æããŸãã PostgreSQL ã§ã¯ã ANALYZE 㯠autovacuum ããŒã¢ã³ ( AUTOVACUUM ) ãéããŠèªåçã«ããªã¬ãŒãããŸããããã¯ããŒãã«ã®å€æŽãç¶ç¶çã«ç£èŠããäºåå®çŸ©ãããéŸå€ã«éããæïŒéåžžã¯ããŒãã«ã®è¡ã® 10% ãæ¿å
¥ãæŽæ°ããŸãã¯åé€ãããåŸïŒã«çµ±èšæ
å ±ãæŽæ°ããŸãã詳现ã«ã€ããŠã¯ã autovacuumããŒã¢ã³ ã®PostgreSQL ããã¥ã¡ã³ããåç
§ããŠãã ããã Aurora DSQL ã«ãããŠãAuto Analyze æ©èœã¯ PostgreSQL ã® autovacuum ã«ãã ANALYZE åŠçããã»ã¹ã«çžåœããã¯ãšãªãã©ã³ãã³ã°ã«äžå¯æ¬ ãªããŒãã«çµ±èšæ
å ±ãèªåçã«ç¶æããŸããPostgreSQL ã®æ±ºå®è«çãªéŸå€ããŒã¹ã®ã¢ãããŒããšã¯ç°ãªããDSQL 㯠2 ã€ã®äž»èŠãªæ§æèŠçŽ ã«åºã¥ãããã«ããªãŒãžã§ã³å¯Ÿå¿ã®ãœãªã¥ãŒã·ã§ã³ãå®è£
ããŠããŸãïŒ ç¢ºççããªã¬ãŒ ãããªã¬ãŒã¡ã«ããºã ãšããŠæ©èœããŸããããŒãã«ã®å€æŽãç£èŠã»è¿œè·¡ãã代ããã«ãåãã©ã³ã¶ã¯ã·ã§ã³ã¯ãããŒãã«ãµã€ãºã«å¯ŸããŠå€æŽããè¡æ°ã«åºã¥ã㊠ANALYZE ãããªã¬ãŒãã確çãèšç®ããŸãããã®ç¢ºççã¢ãããŒãã«ãããã»ãã·ã§ã³éã®èª¿æŽã®å¿
èŠæ§ããªããªããããŒãã«ã®é²åã«å¿ããŠçµ±èšæ
å ±ãæŽæ°ãããããšãä¿èšŒããŸãã ãµã³ããªã³ã°ããŒã¹ã® analyze ææ³ ãå®éã®çµ±èšèšç®ãåŠçããŸããããªã¬ãŒããããšãANALYZE ã¯ãµã³ããªã³ã°æè¡ã䜿çšããŠãå€§èŠæš¡ãªãã«ããã©ãã€ãããŒãã«ã§ãã£ãŠãå¹ççã«æ£ç¢ºãªçµ±èšæ
å ±ãèšç®ããAurora DSQL ãäºå®äžç¡å¶éã®ããŒãã«ãµã€ãºã«ã¹ã±ãŒã«ã§ããããã«ããŸãã 確ççããªã¬ãŒ Aurora DSQL ã¯ãããŒãã«çµ±èšæ
å ±ããã€æŽæ°ããããæ±ºå®ããããã«ãAuto Analyze ã®ç¢ºççããªã¬ãŒã䜿çšããŸããã³ãããããåãã©ã³ã¶ã¯ã·ã§ã³ã¯ãããŒãã«ãµã€ãºãšæ¿å
¥ãæŽæ°ãå逿äœãéããŠè¡ã倿޿°ã«äŸåãã ANALYZE ãããªã¬ãŒãã確çãæã¡ãŸãã ANALYZE ã®ããªã¬ãŒã¯ãã©ã³ã¶ã¯ã·ã§ã³ã®ããã©ãŒãã³ã¹ã«å€§ããªåœ±é¿ãäžããªãããšã«æ³šæããŠãã ããããã®ã»ã¯ã·ã§ã³ã§ã¯ããã©ã³ã¶ã¯ã·ã§ã³ã® ANALYZE 確çãã©ã®ããã«æ±ºå®ããããã説æããŸãã Aurora DSQL ã¯åãã©ã³ã¶ã¯ã·ã§ã³å
ã§ããŒãã«ããšã®å€æŽã远跡ããŸãããã©ã³ã¶ã¯ã·ã§ã³ãã³ãããããããšã倿ŽãããåããŒãã«ã 10% ã®éŸå€æ¯ã«å¯ŸããŠè©äŸ¡ãããŸãããã©ã³ã¶ã¯ã·ã§ã³ãããŒãã«ã®è¡ã® 10% 以äžã倿Žããå Žåã ANALYZE ã¯åžžã«ããªã¬ãŒãããŸããããå°ããªå€æŽã®å Žåã ANALYZE ãããªã¬ãŒãã確çã¯å€æŽãããè¡ã®å²åã«æ¯äŸããŸãã Let threshold_ratio = 0.1 for each modified table R: change_count = num_inserts + num_updates + num_deletes threshold_count = threshold_ratio * pg_class.reltuples(R) probability = change_count / threshold_count if random_number(0,1) <= probability: submit_job("ANALYZE R") ãã®èª¬æã¯çŸåšã100äžè¡ä»¥äžã®ããŒãã«ã«ã€ããŠã®ã¿æ£ç¢ºã§ããããå°ããªããŒãã«ã«ã€ããŠã¯ãAurora DSQLã®å¥ã®ã¯ãšãªããã»ããµã§å®è¡ããã ANALYZE ã®ã»ããã¢ããã³ã¹ããèæ
®ããæžè¡°ä¿æ°ããããŸãã ãã®ç¢ºççã¢ãããŒãã¯ãããŒã¿ããŒã¹ã»ãã·ã§ã³éã®èª¿æŽãå¿
èŠãšããã«ãå¹³åããŠããŒãã«ã® 10% ã倿ŽãããåŸã« ANALYZE ãããªã¬ãŒããŸããã·ã¹ãã ã¯ã確çãèšç®ããããã« pg_class.reltuples (以åã® ANALYZE å®è¡ã«ãã£ãŠèšå®ããã) ããã®è¡æ°æšå®å€ã䜿çšããåæãããŠããªãããŒãã«ã«ã€ããŠã¯ããã©ã«ãã§1è¡ãšããŸãã 確ççã¡ã«ããºã ã¯ã¯ãŒã¯ããŒããã¿ãŒã³ã«èªç¶ã«é©å¿ããŸããé »ç¹ã«å€æŽãããããŒãã«ã§ã¯ãçµ±èšæ
å ±ãããé »ç¹ã«æŽæ°ãããŸããéã«ãéçãªããŒãã«ã§ã¯äžèŠãª ANALYZE ãªãŒããŒããããåé¿ããŸãã ãµã³ããªã³ã°ããŒã¹ã® ANALYZE Aurora DSQL ã ANALYZE æäœãããªã¬ãŒãããšãããŒãã«å
šäœãã¹ãã£ã³ããããšãªãå¹ççã«æ£ç¢ºãªçµ±èšæ
å ±ãèšç®ããããã«ãµã³ããªã³ã°ã䜿çšããŸããã·ã¹ãã ã¯æäœ30,000è¡ã®ãµã³ãã«ãåéããããã«èšèšããããµã³ããªã³ã°çãèšç®ãã倧ããªããŒãã«ã§ã¯ããã«å€ãã®è¡ãåéããŸãããã®ãµã³ãã«ã¯ pg_class ã®ããŒãã«å
šäœã®çµ±èšæ
å ±ãèšç®ããããã«äœ¿çšãããŸãããã®åŸãPostgreSQLãšåæ§ã«ãå³å¯ãª30,000è¡ã®ãµãã»ãããååºæã®çµ±èšæ
å ±ãçæããããã«äœ¿çšãããŸãã ç§ãã¡ã®ææ³ã¯ãèšç®ããã確çã«åºã¥ããŠã¹ãã¬ãŒãžããè¡ãã©ã³ãã ã«éžæããããšã§æ©èœããŸãããã®ã¢ãããŒã㯠PostgreSQL ã®ãµã³ããªã³ã°ææ³ãåæ ããªãããAurora DSQL ã®åæ£ã¢ãŒããã¯ãã£ã«é©å¿ããŠããŸãããµã³ããªã³ã°çã¯ã以åã®çµ±èšæ
å ±ããæšå®ãããããŒãã«ãµã€ãºã«å¯Ÿããç®æšè¡æ°ã«ãã£ãŠæ±ºå®ãããŸãã åè¿°ããããã«ãåéããããµã³ãã«ã¯2çš®é¡ã®çµ±èšæ
å ±ãçæããŸãïŒ pg_class ã«æ ŒçŽãããããŒãã«å
šäœã®çµ±èšæ
å ±ãšãpg_stats ã®ååºæã®çµ±èšæ
å ±ã§ããããŒãã«å
šäœã®æšå®å€ã¯è¡æ°ãšããŒãžæ°ã®æšå®å€ã§ãã pg_stats ã®ååºæã®çµ±èšæ
å ±ã«ã¯ãnullå€ã®å²åãåå¥å€ã®æ¯çããã¹ãã°ã©ã ãæé »å€ãå«ãŸããŸãããããã®çµ±èšæ
å ±ã¯ãå¹ççãªå®è¡ãã©ã³ãçæããããã«å¿
èŠãªæ
å ±ãã¯ãšãªãªããã£ãã€ã¶ãŒã«æäŸããŸãã Aurora DSQLã䜿çšãããµã³ããªã³ã°ããŒã¹ã® Analyze ææ³ã¯ãããŒãã«ã®æé·ã«é¢ä¿ãªãäžè²«ãããµã³ãã«ãµã€ãºãæäŸããããšã§ããã«ããã©ãã€ãã®ããŒãã«ã§ãã£ãŠãå¹ççãªèšç®ãä¿èšŒããŸããå®éšã§ã¯ãæå€§240TBãŸã§ã®ãããããµã€ãºã®ããŒãã«ã§ ANALYZE ãæ°åã§å®äºããããšãããããŸããã ãŸãšã ãã®æçš¿ã§ã¯ãAurora DSQL ã® Auto Analyze æ©èœã«ã€ããŠåŠã³ãŸãããAuto Analyze ã¯ã忣ãã«ããªãŒãžã§ã³ããŒã¿ããŒã¹ã·ã¹ãã ç¹æã®èª²é¡ã«å¯ŸåŠããªãããPostgreSQL ã® autovacuum ã«ãã ANALYZE ã®ä¿¡é Œæ§ãæäŸããŸãã確ççããªã¬ãŒãšå¹ççãªãµã³ããªã³ã°ããŒã¹ã®èšç®ãçµã¿åãããããšã§ãæåä»å
¥ãªãã«ã¯ãšãªãé©åã«ç¶æãããçµ±èšæ
å ±ããäžè²«ããŠæ©æµãåããããšãã§ããŸãã確ççã¢ãããŒãã¯ãåŸæ¥ã®éŸå€ããŒã¹ã®ã·ã¹ãã ãå¿
èŠãšãã調æŽãªãŒããŒãããã®å€ããæé€ãã忣ã¢ãŒããã¯ãã£ã«èªç¶ã«é©ããŠããŸããäžæ¹ããµã³ããªã³ã°ããŒã¹ã®åæã¯ãå°ããªããŒãã«ããå€§èŠæš¡ãª 240TB ã®ããŒã¿ã»ãããŸã§ã¹ã±ãŒã«ããŸããAurora DSQL Auto Analyze ã¯ãããã¯ã°ã©ãŠã³ãã§ééçã«åäœããªãããé©åã«ç¶æããããªããã£ãã€ã¶ãŒçµ±èšæ
å ±ã®å©ç¹ãæäŸããéçºè
ãããŒãã«çµ±èšã®ç®¡çã§ã¯ãªãã¢ããªã±ãŒã·ã§ã³ã®æ§ç¯ã«éäžã§ããããã«ããŸãã Aurora DSQL Auto Analyze ã¯ã Aurora DSQLãå©çšå¯èœãªãã¹ãŠã®ãªãŒãžã§ã³ ã§å©çšã§ããŸããAurora DSQL ã®è©³çްã«ã€ããŠã¯ã ãŠã§ãããŒãž ãš ããã¥ã¡ã³ã ãã芧ãã ããã Magnus Mueller Magnus 㯠AWS ã®å¿çšç§åŠè
ã§ãã«ãŒãã£ããªãã£æšå®ãã¯ãšãªæé©åãã·ã¹ãã åãæ©æ¢°åŠç¿ãå°éãšããŠããŸããã«ãŒãã£ããªãã£æšå®ã®å士å·ãååŸããäž»èŠãªããŒã¿ããŒã¹äŒè°ã§ç ç©¶ãçºè¡šããŠããŸãã James Morle James ã¯ããªã³ã·ãã«ãšã³ãžãã¢å
Œåæ£ããŒã¿ããŒã¹ã¢ãŒããã¯ãã§ããã€ããŒã¹ã±ãŒã«ã§ã®å€§èŠæš¡ãã©ã³ã¶ã¯ã·ã§ãã«ã»åæã·ã¹ãã ã®èšèšã»å®è£
ã«ãã㊠20 幎以äžã®çµéšãæã¡ãŸãã Matthys Strydom Matthys 㯠AWS ã®ããªã³ã·ãã«ãšã³ãžãã¢ã§ã忣ããŒã¿ããŒã¹ã¯ãšãªåŠçãAWS ã¯ã©ãŠããµãŒãã¹ã³ã³ãããŒã«ãã¬ãŒã³ãé«ã¹ã«ãŒãããé»è©±ç¶²çµ±åããã¹ã¯ãããCADããã°ã©ã ãªã©ãå¹
åºããœãããŠã§ã¢ã·ã¹ãã ã«ãã㊠20 幎以äžã®çµéšãæã¡ãŸãã Vishwas Karthiveerya Vishwas 㯠AWS ã®ã·ãã¢ãœãããŠã§ã¢éçºã»ããŒã¿ããŒã¹ã·ã¹ãã ãšã³ãžãã¢ã§ãå€§èŠæš¡åæ£ããŒã¿ããŒã¹ã®ã¯ãšãªãã©ã³ãã³ã°ãã³ã¹ãããŒã¹æé©åãå®è¡æ§èœãå°éãšããŠããŸãã Raluca Constantin Raluca 㯠AWSã®ã·ãã¢ããŒã¿ããŒã¹ãšã³ãžãã¢ã§ãAmazon Aurora DSQL ãå°éãšããŠããŸããOracleãMySQLãPostgreSQL ããã³ã¯ã©ãŠããã€ãã£ããœãªã¥ãŒã·ã§ã³ã«ããã 18幎ã®ããŒã¿ããŒã¹å°éç¥èãæã¡ãããŒã¿ããŒã¹ã®ã¹ã±ãŒã©ããªãã£ãæ§èœããªã¢ã«ã¿ã€ã ããŒã¿åŠçã«çŠç¹ãåœãŠãŠããŸãã 翻蚳ã¯ãœãªã¥ãŒã·ã§ã³ã¢ãŒããã¯ãã®äŒæŽ¥é宿¢šæ²ãæ
åœããŸãããåæã¯ ãã¡ã ã§ãã
åç»
該åœããã³ã³ãã³ããèŠã€ãããŸããã§ãã

















