大手企業8社のデータサイエンスチームが明かす、データエンジニアリング・データ分析基盤・利活用とは

イベント
ブックマーク
大手企業8社のデータサイエンスチームが明かす、データエンジニアリング・データ分析基盤・利活用とは
TECH PLAYが主催するテックカンファレンス『AI/ML、データサイエンスサミット』。今回は、ブリヂストン、ダイキン、トヨタ自動車、ファーストリテイリング、三菱UFJ銀行、電通、SUBARU、ヤマハ発動機という日本を代表する8社のAI(人工知能)やML(機械学習)領域の最前線で活躍するデータサイエンティストたちに、データエンジニアリング・データ分析基盤・データ利活用について語っていただきました。※ファーストリテイリング社の登壇パートはレポートに含まれておりません。

【ブリヂストン】リアル×デジタルで加速するブリヂストン流DXと人財育成

岩﨑 悠志様
株式会社ブリヂストン
デジタルAI・IoT企画課長 岩﨑 悠志氏

ブリヂストンではタイヤの製造・販売をコア事業としつつも、タイヤから得られたデータを活用し、付加価値を提供している。また、モビリティから得られるデータも活用することで、さらなる新たな価値につながるソリューション事業への進化を図っている。

AI/ML、データサイエンスサミットスライド1

「タイヤセントリックソリューション(B)」「モビリティソリューション(C)」。そして、B・C事業で得られたデータをコアのA事業にフィードバックする。このループを回すことで各サービスすべてが高まる、スパイラルアップを戦略に掲げている。

ブリヂストンは、長きにわたりタイヤを扱ってきたメーカーだ。原料の調達から製造、販売、リサイクルといったバリューチェーンでもかなりの強みを持っている。

「その強いリアルにデジタルを組み合わせることで、ブリヂストンならではの商品ならびにソリューションを開発しています」(岩﨑氏)

データを活用したソリューションの開発は、岩崎氏が所属するAI・IoT企画開発チームを中心に行われる。まずは、ビジネス部門から寄せられる顧客課題に対し、ビジネスアナリシス機能により、内容を具体化しビジネス現場の課題をデータ分析の問題に翻訳していく。

さらにデータ収集や可視化などを通じて開発の方向性が明確になれば、システム構築機能で実際に開発を行う。開発されたシステムは、再びビジネスアナリシス機能がビジネス部門と連携しながら、業務への実装や運用・展開のサポートを行う。

AI/ML、データサイエンスサミットスライド2

岩崎氏は現場での事例を2つ紹介した。

事例1:フリートソリューションプラットフォーム

ブリヂストンのタイヤデータとモビリティデータを収集し、デジタルソリューションを開発する「フリートソリューションプラットフォーム」。

以下図のように、「toolbox」ではタイヤやタイヤを装着するリムなどのデータ、「tirematics」ではタイヤ内に取り付けたセンサーから得られる空気圧などのデータ、「basys」では、溝が減ったタイヤの表面に新たなゴムを貼り付けリユースするリトレッドと呼ばれるサービスに関するデータを収集している。

さらにフリートマネジメント(車両・運行管理)システムを提供する2社を買収し、モビリティデータも収集できるようになった。これらのユニークなデータを活用したソリューションの開発と提供を進めている。

AI/ML、データサイエンスサミットスライド3

事例2:摩耗予測ソリューション

JALとの協業により、飛行機の機体データとタイヤデータ、タイヤ知見を組み合わせてタイヤの摩耗を予測するAIを開発し、タイヤの交換時期を予測するソリューションを提供している。

AI/ML、データサイエンスサミットスライド4

岩﨑氏は、AI開発で活躍するデータサイエンティストなどのデジタル人材の育成についても言及した。

「ソリューションビジネスを拡大していくためには、デジタル人材の育成が重要であるため。り、各種施策を進めています。東北大学との共創プログラムや、学会発表・論文投稿への積極的なアプローチ、博士課程への留学制度などにも取り組んでいるところです」(岩﨑氏)

AI/ML、データサイエンスサミットスライド5

株式会社ブリヂストン
https://www.bridgestone.co.jp/
株式会社ブリヂストンの採用情報
https://www.bridgestone.co.jp/saiyou/recruit/index.html

【ダイキン】故障診断・予知アルゴリズムの市場投入に向けた取り組み

小倉 孝訓様
ダイキン工業株式会社
テクノロジー・イノベーションセンター 主任技師 小倉 孝訓氏

ダイキンでは空調機の製品データや空間データ、社内に偏在するあらゆるデータを組み合わせて分析し、開発から流通などすべてのドメインで活用することで、快適な空間の実現を目指している。 その中から今回は、サービスドメインにおける「故障診断・予測」の事例が紹介された。

AI/ML、データサイエンスサミットスライド6

ダイキンにおける故障診断・予測におけるデータ活用は、20年以上前からエアネットサービスとして行われている。顧客物件に備わるエッジコントローラーが異常を検知すると、コントロールセンター、最寄りの拠点に連絡が行き、現地に向かうという流れだ。現在は省エネ機能なども提供している。

2021年からは運用、保守、更新において、顧客ごとに異なる様々なニーズに対応する クラウド型空調コントロールサービス「DK-CONNECT(ディーケーコネクト)」を展開する。

一方で、課題もあった。これまでは、空調機の状態から設計知見をもとにルールベースで異常を判断してきた。しかし、空調機は設置環境、施工状況、使われ方が製品によりさまざまであるため、高い精度を出すことが難かったと小倉氏は振り返る。

この「物件の個体差」に対応し、より高精度な手法が求められる中、当初は「ルールの詳細化」「正常値からの剥離による検知」という2つのアプローチを検討した。だが、新機種への対応やより多くの部品のデータを収集する必要があるといった課題が浮上する。

これらの課題を解決するために新たに取り組んだのが、稼働後の正常データから正常値を推定するモデルを作成し、予測値と実測値の乖離度で異常検知を行うというものだ。 「学習モデルは機器ごとに行われるため、場所や使い方といった物件の個体差にも対応できます。新機種への対応も比較的容易です」(小倉氏)

AI/ML、データサイエンスサミットスライド7

パラメータの選定(機械学習モデルの特徴量)については、探索した結果、設計者やハードウェアエンジニアの知見を取り込んだドメイン知識によるものが最も精度が高かった。

一方で、稼働後のデータによりモデルを構築していくため、判定ができるまでに約1年間を要する。初期不良のある機器では良質なモデルができない弱みもある。後者においては、初期不良をチェックするロジックを新たに構築する対策を検討している。

現場導入に向けての課題もあった。大前提として、既存ロジックよりも高精度であることを、サービスエンジニアに示す必要がある。確かなラベルが必要なため、サービスエンジニアの修理履歴を分析することで抽出していった。

ロジックで異常結果が出た部品は、サービスエンジニアが現場に出向き、交換することで、正常に復帰するか確認した。「改めて、現場のエンジニアとの信頼関係が重要だと感じた」と、小倉氏は振り返る。

特定条件下でのみ異常が出るケースなどもある。そこで機器の異常判定を現場のエンジニアも把握できるようにするため、運転データ解析支援アプリを開発する。つまり、異常を検知するデータを見える化したのである。

現場のエンジニアが得た情報をラベルデータとして加えるフィードバック機能も盛り込み、さらなる精度の向上を目指す。

「ドメイン知識も含め、過去の知見やレガシーシステムともうまく付き合いながら、現場のエンジニアに役立つシステムをこれからも開発していきます」(小倉氏)

AI/ML、データサイエンスサミットスライド8

ダイキン工業株式会社
https://www.daikin.co.jp/
ダイキン工業株式会社の採用情報
https://www.daikin.co.jp/recruit

【三菱UFJ銀行】金融市場ビジネス変革に向けたデータサイエンスの挑戦

堀金 哲雄様
株式会社三菱UFJ銀行
市場企画部 市場エンジニアリング室クオンツ開発Gr
デスククオンツ&イノベーションライン チームリーダー 堀金 哲雄氏

三菱UFJ銀行の堀金哲雄氏は、金融業務ならびにビジネスの肝、業務で求められる技術について紹介した。

個人・法人問わず、金融業務には預金、ローン(貸付)、決済・送金といったさまざまなサービスがある。これらのサービスの根幹は、「お客様の抱えるリスクを引き受けてコントロールすること」と、堀金氏は語る。

そのコントロールには、お金の流れを上手にエンジニアリングするための金融工学、分析を行うための統計学、顧客の大量データを分析するための高速計算、計算を可能にするためのプログラミング技術などが必要となるが、三菱UFJ銀行ではその一部を内製している。

AI/ML、データサイエンスサミットスライド9

グローバルでビジネスを展開する企業であれば、売上は外貨で得るが、日本の従業員には円で支払う。当然、為替や原油価格といったマーケットや世界情勢の影響や動向を考慮しなければならない。

加えて、顧客のビジネスの状況も把握しながら、適切な取引や時期、価格などを提案する必要がある。これらのサービスを実現するために、多くのデータ(情報)を収集する。

一方、情報の収集や管理において紙面や電話でのやり取りなど、アナログ的な体制が多くあるそうで、DXを進めるべく数年前から「デジタルトランスフォーメーション戦略の概略」を掲げ、取り組んでいる。

AI/ML、データサイエンスサミットスライド10

データの流れとしては、まずはアナログ業務を電子化する。得られたデジタルデータを、中央部のデータレイクに収集する。上記スライドの右側「アクティビティの自動化」では、人が行っていたマーケティングをデータを使って判断したり、レコメンデーションエンジンなどを開発する。これらのAI/MLの開発業務は社外秘的な要素も多いため、内製化チームを立ち上げたという次第だ。

チームビルディングのポイントは「What・How・Who」を意識し、影響が少なく、できるところから、人事も含め持っているアセットを活用すること。実際、成果も出ている。

「機密情報も多いため外部のSaaSではなく、内製開発できるものはこれからも取り組んでいきたい」(堀金氏)

また、社内人材のリスキルにも取り組んでいるが、業界外のキャリアを持つデータサイエンティストも積極的に採用していきたいと、堀金氏は語っている。

現在は機械学習モデルの開発効率化を目指し、研究開発基盤も準備中だ。今後は、AWSのフルマネージドサービスSageMakerを使い、さらなる内製化や開発の高速化を目指す。

AI/ML、データサイエンスサミットスライド11

株式会社三菱UFJ銀行
https://www.bk.mufg.jp/index.html
株式会社三菱UFJ銀行の採用情報
https://www.mysite.bk.mufg.jp/career/

【ヤマハ発動機】データエンジニアリング視点から語るデータ活用の舞台裏

佐々木 誠様
ヤマハ発動機株式会社
デジタル戦略部データ分析Gデータエンジニア 主務 佐々木 誠氏

ヤマハ発動機でデータエンジニアとして、データマネジメント施策の推進を行う佐々木氏。 同社には「主観・想像力・意志」といったキーワードを強みとした自由闊達な社風のもと、情熱や想いを持つ人材が多いという。

「これらの強みをさらにデータで引き立て、両者を掛け合わすことで、より良い商品をお客様に届けていきたいという想いで、日々活動しています」(佐々木氏)

AI/ML、データサイエンスサミットスライド12

佐々木氏が所属するデジタル戦略部はまさにその考えを、大きく3つの分野に関するデータへの取り組み、連携で実現していく。具体的には以下が挙げられた。

  • 業務/スマートオペレーション
  • 製品/コネクティッド
  • お客様/デジタルマーケティング

AI/ML、データサイエンスサミットスライド13

組織に散らばる優秀な人材を目的達成のために集めたCoE型の組織であり、いずれは全社員が当たり前にデータ活用できることを目指している。

ビジネスへのデータ活用も進んでいる一方で、課題もある。使いたいデータが取り込めていない、整理されていない、大容量すぎるなど。個人情報のアクセス管理も問題だ。

そこで現在は「データ分析基盤」「データマネジメント」に取り組んでいる。

データ基盤のシステムアーキテクチャも紹介した。左がデータを生み出す側であり、製品、顧客、製造と主に3つの流れで、Google Cloudに収集する。集めたデータは、分析、AI開発、レポーティングと主に3つの用途で活用されている。

AI/ML、データサイエンスサミットスライド14

活用事例として、IoTバイクが紹介された。燃料の消費、エンジンの回転数といった車両状況、移動経路などをBluetooth、スマホを経由してAWSにデータ送信する。

運転者自身がデータを閲覧できるのはもちろん、データを分析することで故障予知や製品・サービス開発につなげたり、非常時にはアラートにも活用している。

AI/ML、データサイエンスサミットスライド15

データ分析基盤には、車両から得たあらゆる走行・位置データを統合し、BigQueryにより大容量データの分析が行われている。

ユーザー情報や車両情報には、国や年齢などのデータも含まれるため、データを収集・分析することで、特定の国や地域における人気モデルを分析できる。そのデータをもとに、次の製品の仕様を決めるといった活用も可能だ。

AI/ML、データサイエンスサミットスライド16

IoT領域のデータ活用では、異常検知やレースで速く走れる条件を抽出するなどの活用もしている。顧客領域では、Webの閲覧履歴を販売プロセスに活用することで、購入確率の高いお客様へ積極的に接客できる支援や購入後のアフターフォローなど、マーケティングでも活躍。製造領域では、品質の分析による不良検知などで活用が進んでいる。

AI/ML、データサイエンスサミットスライド17

データマネジメント領域では、どのようなデータがどこに配置されているのかなど、いわゆるデータの可視化。そして、セキュリティの観点からアクセス権の管理やデータガバナンス。ルールや標準をしっかりと整備し、かつ、明確化を着実に進めている。

AI/ML、データサイエンスサミットスライド18

「我々はデータサイエンスのプロチームとして、各種データの分析やAI/MLでモデルを作成し、さまざまな問題を解決・改善しています。今後もデータ分析の社内民主化を進めていきたいと思います」(佐々木氏)

ヤマハ発動機株式会社
https://global.yamaha-motor.com/jp/
ヤマハ発動機株式会社デジタル戦略部の採用情報
https://global.yamaha-motor.com/jp/recruit/career/features/digital/index.html

【電通】文系ビジネスサイドから見た機械学習のマーケティング施策への活かし方

三谷 壮平様
株式会社電通
データ・テクノロジーセンター
プラットフォーマーデータ部 シニア・アナリスト 三谷 壮平氏

電通は広告会社のイメージが強いが、現在はIGP(Integrated Growth Partner)を掲げ、クライアントの成長全体のサポートや社会貢献を目指し、各種業務に取り組んでいる。

実現に際しては大きく4つのトランスフォーメーション領域で、事業を展開。BXは事業全体を、CXは顧客体験を、DXはマーケティング基盤を、AXは広告コミュニケーションを、それぞれ変革する。

AI/ML、データサイエンスサミットスライド19

三谷氏は、自身の所属するデータ・テクノロジーセンターの役割を次のように説明した。

「CX、AX領域での事業を推進するために各種ソリューションを開発するなど、全社においてデータを用いた“武器づくり”を担当しているDX領域の要の部署です」(三谷氏)

AI/ML、データサイエンスサミットスライド20

技術進歩により、多くのマーケティングデータが取得できる。だが、データそのものには価値がなく、分析技術とビジネスドメインの知識を掛け合わせることで、課題を解決する適切なソリューションが生まれる。

だが、とりあえずトップダウンでデータ活用ができるシステムを構築したものの、ビジネスの課題解決ありきのシステムではないため、どのように使ってよいのか分からないといったことも少なくない。

「我々はこのようなことが起きないよう、ビジネスサイドの課題から逆算して、システムを設計する進め方を心がけています。そもそも成果は、システムの構築それ自体ではなく、システムによりどのような効果があったのか。それを定量的に測れることも重要だと考えています」(三谷氏)

AI/ML、データサイエンスサミットスライド21

さらに三谷氏は、デジタル広告運用における課題を解決事例に重ねて説明を行った。

デジタル広告枠の取引は、事前に広告枠全体を予約するマスメディアと異なり、広告の表示機会ごとに最適な広告を掲載するために、オークション形式で行われることが多い。個々のオークションでは、それぞれ入札金額を適切に調整し、より安価に買い付けする必要がある。

だが、オークションの回数は数百万回から数億回にもおよぶため、人が介在することは非現実的。そこで、自動入札アルゴリズムにより落札金額が決定される。

具体的には、広告をクリックするなど成果の見込みがあるユーザーの要素(特徴量)を教師データとした機械学習モデルを作り、そのモデルが最適な入札金額を決めている。

AI/ML、データサイエンスサミットスライド22

ただし、アルゴリズムは広告プラットフォーム事業者が独自に開発しており、外部から直接介入することはできない。一方で、申込みなどの結果変数においては外部から送っているため、ここに工夫の余地があると三谷氏は考えた。

また、多くのケースでデジタル広告運用のゴールは本来の事業成果である課金利用や購入ではなく、初回トライアルなど途中地点の場合が多いという。その理由はシステム、タイムラグ、サンプル不足などが考えられ、まさにこの部分がビジネス課題となっている。

そこで三谷氏のチームはビジネス課題に技術サイドの分析技法、具体的には会員登録の時点で観測できる情報から、その後の購入を予測するモデルを機械学習で作成することで、課題解決を実現した。

AI/ML、データサイエンスサミットスライド23

このような問題はECサイトに限らず、アプリやサブスクリプションでも発生するなど汎用的な課題であることから、独自ソリューションとしてパッケージ化しリリースしていることも紹介した。

AI/ML、データサイエンスサミットスライド24

株式会社電通
https://www.dentsu.co.jp/
株式会社電通の採用情報
https://www.dentsu.co.jp/careers/

【SUBARU】次世代「アイサイト」開発で増え続けるデータの処理と活用

AI/ML、データサイエンスサミットスライド25
株式会社SUBARU
ADAS開発部 主査 金井 崇氏

アイサイトはSUBARUが開発しているADAS(先進運転支援システム)で、衝突事故の回避・軽減のためにブレーキを自動で作動させたり、一定の車間距離を保ちながら前方の車両に追従するためにアクセルやブレーキなどを自動で作動させる機能などを備える。

このような機能を実現するために必要な周囲の情報取得をしているのが、SUBARUが30年以上前から内製開発している「ステレオカメラ」だ。

「原理は人の目と同じ。2つのカメラで車外にある物体や情報を立体的に捉え、それがどこにあり、何なのかを認識します。この認識が本日お話する内容の中心になります」(金井氏)

AI/ML、データサイエンスサミットスライド26

より高性能な認識を実現するために、SUBARUでは『SUBARU ASURA Net』という画像認識AIを開発している。当然だが、走行中の認識は瞬時に行われなければならないが、認識タスクごとに独立したAIを作っていては、処理に時間がかかってしまい製品化できない。

そこで、ASURA NetはBackboneからheadsと呼ばれる各種タスクを派生するマルチタスク・ニューラルネットワークとしており、金井氏はそれを「阿修羅観音のようだ」と表現した。

headsは例えば道路、標識、ランプなどを認識するタスクに対応する。ただ、タスクの増加に伴い、モデル学習の規模も拡大していくため、業務ボリュームが増加していった。コード変更や追加頻度の増加、タスクごとの教師データの種類や内容の増加などである。

AI/ML、データサイエンスサミットスライド27

学習用データセットの準備(前処理)は、イメージファイル、アノテーションファイルを前処理して学習演算用のTFDS(TensorFlow Datasets)を作成する。だが、用意するデータセットの増加に伴い、オンプレミスのPCでは丸1日以上かかるなどの課題があった。

学習規模拡大による業務ボリューム増大への対応としては、機械学習の計算ジョブの自動化を検討。Google Cloudが提供しているマネージドな機械学習プラットフォーム、Vertex AI Trainingを導入した。機械学習の計算ジョブは基本、コンテナベースで作られている。Vertex AI TrainingによりAIのモデル変更後の機械学習のジョブが自動で実行できるようになり、変更頻度増加による開発者の稼働増加を抑止することが出来た。

AI/ML、データサイエンスサミットスライド28

また、学習用データセットの準備については Cloud Dataflowを導入した。成果はすでに出ており、丸1日以上かかっていた処理時間は30分程度に短縮された。クラウドならではの強みを活かし、自動でスケールアウトする機能を備えたETLサービスの機能を学習データ準備ジョブに活用することで、データ量(タスク)が増えても、学習用データの前処理に時間を取られることはなくなった。

AI/ML、データサイエンスサミットスライド

走行データの管理についても紹介された。これまで各地を実際に走行し集まったデータは、膨大になる。そのため、必要なときにすぐに見つけられるように、場所や天候といったタグをつけるとともに、地図上にマッピングするなどの工夫をしている。加えて、モデルの各バージョンによる認識のデータ管理も行う。

実走行で撮影データを収集する一方で、同手法では時間も手間もかかるため、CGを活用することで、正解データを作成する取り組みも行っている。

AI/ML、データサイエンスサミットスライド

CGの活用はまだある。これまでは実車で行っていた各種テストやアセスメントを、ある程度CGで行うのである。デジタルツイン的な発想と言える。

「ただし、我々は自動車会社でありCG制作の専門家ではありません。そこで、過去に撮影した走行画像データを元にCG制作ができるように、さらに負担を減らす取り組みも行っています」(金井氏)

株式会社SUBARU
https://www.subaru.co.jp/
株式会社SUBARUの採用情報
https://www.subaru.co.jp/recruit/

【トヨタ自動車】コネクティッドカーの運転操作・車両挙動データの解析・活用

福島 真太朗様
トヨタ自動車株式会社
コネクティッド先行開発部 InfoTechデータ解析基盤G
グループ長/プリンシパル・リサーチャー 福島 真太朗氏

トヨタ自動車では、通信機能を持ったコネクティッドカーからデータを収集・蓄積・解析し、サービスとして返す流れでデータ活用が行われている。

AI/ML、データサイエンスサミットスライド

運転操作や車両挙動の履歴データをもとに、エンドユーザー向けのカーナビや音声対話やドライバーに最適な保険を紹介するBtoB向けのサービス活用も行っている。

現在取り組んでいるプロジェクトも紹介された。電気自動車の電池残量にエネルギー消費モデルを組み合わせるアルゴリズムを活用することで、到達可能なエリアを導きだし、カーナビなどで視覚的に表示する(スライド左上)。

例えば道路の維持管理を行う際、道路への負荷を把握するための一つの手段として交通量を調べる必要がある。交通工学、機械学習・データサイエンスといった分野の技術を組み合わせ、時空間的なモデリングを行うことで実現する(スライド右下)。

AI/ML、データサイエンスサミットスライド

データ活用のプロセスについても、以下のように紹介された。データサイエンティストと機械学習エンジニアが協業して、データ解析・基盤を実現し、向上する体制となっている。

AI/ML、データサイエンスサミットスライド

崎山 亮恵様
トヨタ自動車株式会社
コネクティッド先行開発部 InfoTechデータ解析基盤G 崎山 亮恵氏

続いて登壇した崎山氏は、トヨタ自動車でのデータサイエンティストの具体的な業務や働く環境を説明した。

「自動車業界のトレンドであるCASEは、データサイエンティストにとって新たに活躍できる舞台です。トヨタ自動車は、研究発表や博士号の取得を推奨するなど、技術を尊ぶ文化があるとも感じています。中途メンバーも多く、さまざまな業界から集まっていることも特徴です」(福島氏)

AI/ML、データサイエンスサミットスライド

社内外ともに多数の部署、関係者とやり取りしていることも紹介された。

たとえば企画部門からはこれから実現したいサービスを打診され、技術的に実現可能かどうかをデータを元に判断し、提示するようなやり取りがあるという。

逆に自分たちからデータを元に、新たなサービスを提示することもある。

AI/ML、データサイエンスサミットスライド

クルマだけでなく、販売店やスマホアプリから大量のデータを収集しているため、顧客の状況や行動を深く理解できることはトヨタ自動車ならではの強みと言える。

その上で、情報やサービス配信チャネルも複数持ち、グローバルトップクラスの販売台数を誇るトヨタ自動車だからこそ、幅広いお客様にリーチできるのが、トヨタ自動車におけるデータ活用の特徴である。それらの特徴を活かして、データ活用サービスを通じ、いい町づくりや安心安全に貢献したいと強調した。

AI/ML、データサイエンスサミットスライド

事例として、企画部門からの打診により、タイミングよく魅力的なスポット情報を伝えるサービスを開発するまでの流れも紹介された。

まずはビジネスを理解する。その上で今回は、普段訪れない地域にいるとき、他の多くの観光客が訪れている、かつ、サービス利用者の嗜好に合う施設を提示するサービスと定義する。

次のステップは、ビジネスロジックをデータに置き換える、データ解析ならびにモデリングだ。ナビの設定、GPS(位置情報)、好みのジャンルといったデータ群から、どのデータを活用すべきか。モデリングも複数手法を検討する。

「企画部のメンバーと一緒に良いサービスとは何か、良いロジックとは何かについてディスカッションと改善サイクルを重ねながらサービス像とアルゴリズムを改善していきます」(崎山氏)

AI/ML、データサイエンスサミットスライド

さらには実ユーザーへのヒアリング、デモによるユーザー評価なども行い、ロジックならびにサービスを更に改善していく。

「最後に、実サービスを想定した上でのアーキテクチャの検討を、コストも加味しながら確認します。確認結果を基に、必要に応じてロジックを修正した上で、開発部署に引き渡します。」(崎山氏)

AI/ML、データサイエンスサミットスライド

トヨタ自動車株式会社
https://global.toyota/
トヨタ自動車株式会社の採用情報
https://www.toyota-recruit.com/career/

このように各社では、データサイエンティストやデータエンジニアを求めている。興味のある企業やプロジェクトなどがあったら、ぜひ気軽にアプローチしてみよう。

TECH PLAYでは、ITに関わる様々なイベント・勉強会・講演会・交流会・カンファレンス・セミナーなどの情報を集約し掲載しています。

テクノロジーと共に成長しよう、
活躍しよう。

TECH PLAYに登録すると、
スキルアップやキャリアアップのための
情報がもっと簡単に見つけられます。

面白そうなイベントを見つけたら
積極的に参加してみましょう。
ログインはこちら

タグからイベントをさがす