「Deep Learning」に関連する技術ブログ(88件)

企業やコミュニティが発信する「Deep Learning」に関連する技術ブログの一覧です。

自己回帰型モデルの深層学習

初めまして、データチームの上月です。 今回はVASILYテックブログ初の論文紹介、テーマは 自己回帰型モデル(Autoregressive, AR)です。 はじめに VASILYではIQONの類似画像検索にAutoencoderを適用しています。 具体的にはアイテム画像で学習したAutoencoderの潜在変数を特徴量として類似画像検索を行っていますが、背景やモデルの影響を受けやすいなどの課題があります。 この問

Fashion Tech meetup vol.4を開催しました

2017年6月7日、第4回目となるFashion Tech meetupを開催しました。今回はVASILYが主催となり、バックエンドチーム、フロントエンドチーム、データチームが業務で行っている開発・運用のノウハウを発表しました。 本記事で弊社の登壇資料を公開しますので、ご参加できなかった方、Fashion Tech meetupを初めて知った方、是非ご一読ください。 メインセッション VASILY流CSSコーディ

レコメンドに画像の情報を活用する方法

データサイエンティストの中村です。 ファッションアイテムの画像から抽出した特徴量は検索以外にも利用することができます。 今回はレコメンドにおける画像特徴量の活用について、以下の3トピックを考えてみたいと思います。 画像特徴量を利用したコンテンツベースレコメンド モデルベース協調フィルタリングにおけるコールドスタート問題の軽減 画像特徴量を

ファッションアイテムの画像からの特徴抽出とマルチスケールなCNNの効果

同僚に3ヶ月のディープラーニング禁止令を言い渡したデータサイエンティストの中村です。 VASILYではスナップ画像に写っているモデルさんが着ている服と似ている服を検索する画像検索エンジンを開発しています。 ファッションアイテムを探す際、デザイン(アイテムの色や模様)はとても重要なファクターになります。 ファッションアイテムの画像検索システムも当然

VASILYにおけるBigQuery + Tableau活用例

こんにちは! なんでもディープラーニングでやりたがる癖が抜けず、3ヶ月のディープラーニング禁止令を言い渡されていた後藤です。 本記事ではVASILYで利用しているデータ分析の環境について紹介します。 VASILYではデータ分析が必要な場面で、BigQueryとTableauを組み合わせて利用することが多いため、これらの実際の活用例とTableauの選定理由について紹介したいと思いま

形態素解析とNgramを併用したハイブリッド検索をSolrで実現する方法

こんにちは、バックエンドエンジニアの塩崎です。 今まではiQONの全文検索用のインデックスには形態素解析だけを用いていましたが、先日Ngramも併用することで検索を改善しました。 その結果、検索結果のヒット数が向上し、なおかつ検索ノイズの増加を軽微なものに抑えることができました。 この記事では、Ngramを併用することのメリット、およびそれをApache Solrで利

IBIS2016参加報告

こんにちは、データチームの後藤です。 VASILYデータチームは2016年11月16日~18日にかけて、京都大学で行われた第19回情報論的学習理論ワークショップ(以下、IBIS2016)に参加しました。本記事では、発表の様子や参加した感想をお伝えしたいと思います。 IBIS2016 IBISは、機械学習に関する国内最大規模の学会です。機械学習や統計学、情報理論などの理論研究や、機械学習の応

ディープラーニングによるファッションアイテム検出と検索

データサイエンティストの中村です。VASILYではファッションに特化した画像解析エンジンを開発しています。本記事では、スナップ写真からファッションアイテムを検出するシステムを紹介したいと思います。 概要 このシステムの入力はスナップ写真です。スナップ写真が入力されたとき、システムは以下のタスクを解きます。 写真中からファッションアイテムに該当

Chainerとチャンピオンモデルでファッションアイテム判別器を作る

こんにちは、データチームの後藤です。この記事では、一般物体認識で優秀な成績を収めた代表的なニューラルネットワークモデルを、ファッションアイテムの画像データに対して適用し、どのアーキテクチャが有用か、どれだけの精度を出せるのかを調べる実験を行います。 今回は、 AlexNet Network In Network GoogLeNet DenseNet の4つのアーキテクチャを試しました。 背景 iQONで

Fashion Tech meetup vol.3を開催しました

2016年9月20日、第三回目となる Fashion Tech meetup を開催しました。前回に引き続き、 MERY を運営する株式会社peroli様、 FRIL を運営する株式会社Fablic様との共同開催となりました。 今回も増枠を設けるほどの申込みがあったのですが、イベント当日は台風16号が接近し、天候に恵まれない日となってしまいました。 そんな中、悪天候にも関わらず多くの方が足を運んだくださり

Fashion Tech meetup #2を開催しました

2016年3月22日、第二回目となる Fashion Tech meetup を開催しました。前回は MERY を運営する株式会社peroli様との開催でしたが、今回は FRIL を運営する株式会社Fablic様が加わり、VASILYを含め3社での開催となりました。 イベント公開開始時、参加枠70席のところ120名を超える申し込みがあり、増枠を設けるほどの大盛況となりました。 最終的に180人を超える申し込みを頂き、Fashion

ディープラーニングを活用したマイクロサービスを構築し、画像から商品カテゴリの分類をしてみる

こんにちは、VASILYのバックエンドエンジニアの塩崎です。 iQONの中ではクローラーと検索サーバーを担当しています。 iQONのクローラーには提携ECサイトさんからクロールした商品を商品カテゴリー(Tシャツ、ワンピース、etc.)に自動的に分類する機能があり、商品タイトルや商品説明文などのテキスト情報を元に分類を行っています。 しかし、一部のカテゴリー(セーター

ディープラーニングで洋服を整理してみました

概要 畳み込みニューラルネットワークによる画像生成モデル(DCGAN)に弊社のワンピース画像10万枚を学習させました。 得られた生成モデルを使って、乱数で作った100次元ベクトルからワンピース画像を生成しました。 逆に、一枚のワンピース画像を100次元ベクトルに圧縮し、可視化しました。 可視化したことで、モデルがワンピースの【色】【形】【柄】【モデルやマ

アクセス数ランキング

  • 現在集計中です...

TECH PLAY でイベントをはじめよう

グループを作れば、無料で誰でもイベントページが作成できます。情報発信や交流のためのイベントをTECH PLAY で公開してみませんか?