「MLOps」に関連する技術ブログ

企業やコミュニティが発信する「MLOps」に関連する技術ブログの一覧です。

SageMakerを使った学習&推論のバッチパターン (2/4)

こんにちは。分析グループ(分析G)でMLOps/データエンジニアしてます伊ヶ崎( @_ikki02 )です。 こちらは「KINTOテクノロジーズ株式会社にてどのようにMLOpsを適用していくのか」というテーマでの連載2本目です。1本目の記事「 KINTOテクノロジーズのMLOpsを定義してみた 」はリンクよりご確認ください。後続の記事では、SageMaker Experimentsを用いた実験管理、そして、他部署も巻き

Knative Servingを用いて多数の開発環境APIを低コストで構築する

はじめに こんにちは、技術本部ML・データ部MLOpsブロックの鹿山( @Ash_Kayamin )です。先日、20個の開発環境APIを用意し、各APIをリクエストに応じて動的に起動できる仕組みをKnative Servingを用いて構築しました。 この記事ではKnative Servingを利用した背景と、利用方法、はまりどころ、利用によって得られたコスト削減効果についてご紹介します。なお、今回はKubernetesクラス

How We Define MLOps in KTC (1/4)

By Ikki Ikazaki, MLOps/Data Engineer at Analysis Group This is the first part of a multi-part series on how KINTO Technologies Corporation(KTC) developed a system and culture of Machine Learning Operations(MLOps). Subsequent posts will cover batch patterns as the prediction serving pattern using SageMaker Pipelines, SageMaker Experiments to track the experiments conducted by data scientists, and "Benkyo-kai", a series of internal study sessions, to form the common knowledge about SageM

KINTOテクノロジーズのMLOpsを定義してみた (1/4)

こんにちは。分析グループ(分析G)でMLOps/データエンジニアしてます伊ヶ崎( @_ikki02 )です。 こちらは「KINTOテクノロジーズ株式会社にてどのようにMLOpsを適用していくのか」というテーマでの連載1本目です。後続の記事では、SageMaker Pipelinesを用いたバッチ推論、SageMaker Experimentsを用いた実験管理、そして、他部署も巻き込んで開催した勉強会のお話などをしていければと考

キャディ新プロダクトリリースに寄せて

はじめに ご無沙汰しております。キャディでCTO務めております小橋です。 先ほど製造業のモノづくりに直接関わっていたキャディならではの製造業向け SaaS プロダクト 「CADDi DRAWER」のプレスリリース を出しました。この数年間、物理的な製造・検査・納品をしながら培った ドメイン 知見とソフトウェア技術を レバレッジ して、ソフトウェアを通じて産業に直接的な価

MLOps導入でAmazon SageMaker PipelineによりMLワークフロー構築の話

MLOps導入でAmazon SageMaker PipelineによりMLワークフロー構築の話 はじめに はじめまして、スタンバイのSearchAdvertisingCoreGroup(検索・広告コアグループ、以降SACG)で機械学習関連の開発をやっている王です。今回はAmazon SageMaker PipelineでMLワークフローを構築する取り組みを紹介します。 MLOpsとは 私が所属しているSACGは機械学習モデルを用いて改善施策をオフラインで効果検証して

Vertex AI Pipelinesによる機械学習ワークフローの自動化

はじめに こんにちは。検索基盤部の倉澤です。 私たちは、ZOZOTOWNの検索機能の改善に取り組んでいます。ZOZOTOWNのおすすめ順検索ではランキング学習を用いた検索機能の改善に取り組んでおり、A/Bテストにて効果を測定しています。 ランキング学習やElasticsearch Learning to Rankプラグインについては過去の記事で紹介していますので、併せてご覧ください。 techblog.zozo.com techbl

画像に対する自己教師あり表現学習手法について②

はじめに 機械学習エンジニアの荒居秀尚です。2021年新卒入社で、機械学習モデリングや機械学習を用いたデータ施策におけるM

Cloud Composer 2上でApache Airflow 2のワークフローを実装する

はじめに こんにちはZOZOデータサイエンス部MLOpsブロック松岡です。 本記事では先日リリースされたGCP( Google Cloud Platform ) Cloud Composer の最新バージョンCloud Composer 2について紹介します。 ZOZOTOWNでは、多種多様な商品が毎日新たに出品されています。現在MLOpsブロックでは、機械学習で商品情報の登録を補佐するシステムを開発しています。 このシステムでは商品情報を

Vertex Feature Storeの機械学習システムへの導入

こんにちは、データシステム部推薦基盤ブロックの寺崎( @f6wbl6 )です。現在、推薦基盤ブロックではデータサイエンス部MLOpsブロックのメンバーと協力しながらMLOps基盤の構築を進めています。本記事ではMLOps基盤構築の一環として進めている Vertex Feature Store の機械学習システムへの導入に関する知見およびVertex Feature Storeを導入する上での制限や課題をご紹介します。 M

【SHE×wellday CTO対談】スタートアップにおけるデータプロダクトの開発戦略

はじめまして!SHEで人事をしております永田です。現在は複業としてSHEにジョインしており採用を担当しております。今回のテックノートは「スタートアップにおけるデータプロダクトの開発戦略」と題して、SHE株式会社執行役員CTOの村下(あきらさん)と株式会社wellday執行役員CTO中村さんが対談した内容をお届けします。連載を予定しており今回は初期のデータ収集戦

MLOpsはじめました

この記事は Enigmo Advent Calendar 2021 の15日目の記事です。 はじめに 寒さが身にしみる今日この頃、みなさん如何お過ごしでしょうか。 最近、○○エンジニアという肩書きがよく分からなくなってきたエンジニアの伊藤です。 アドベントカレンダー の時期になると年末になったんだなという実感が湧きますね。 今回は今年一番注力してやってきたMLOpsについて書いていこう

Terraformにまつわる運用tips的なもの

この記事は Enigmo Advent Calendar 2021 の12日目の記事です。 こんにちは。 BUYMA の検索やMLOps基盤周りを担当している竹田です。 この一年間はTerraformを業務で利用することが多かったため、普段気を付けていることなどを運用tipsとして紹介したいと思います。 Terraform Terraformは言わずと知れた Infrastructure as Code (IaC) を実現するためのツールです。 先日v1 🎉 になり、安定してき

Azure データ分析基盤における DataOps の実践方法を考えてみる

ISID X(クロス) イノベーション 本部 アドバンスドテク ノロ ジー 部の米谷です。本記事は 電通国際情報サービス Advent Calendar 2021 の9日目のポストです。 私は現在、 Microsoft Azure を使ったデータ分析基盤の案件支援や研究開発の業務を行っています。本記事では、個人的に最近注目している DataOps というキーワードについて書いていきたいと思います。 DataOps とは? DataOps

Kubeflow PipelinesからVertex Pipelinesへの移行による運用コスト削減

こんにちは、技術本部 データシステム部 MLOpsブロックの平田( @TrsNium )です。約2年半ぶりの執筆となる今回の記事では、MLOps向け基盤を「Kubeflow Pipelines」から「Vertex Pieplines」へ移行して運用コストを削減した取り組みを紹介します。 目次 目次 はじめに Vertex Pipelinesとは Vertex Pipelinesへの移行 Vertex Pipelinesへ移行するワークフロー 1. ワークフローのKubeflow Pipelines SDK V2への
技術ブログを絞り込む

TECH PLAY でイベントをはじめよう

グループを作れば、無料で誰でもイベントページが作成できます。情報発信や交流のためのイベントをTECH PLAY で公開してみませんか?